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Introduction

The aim here is to represent a given dataset compactly using a probability density

function from some parametric family (e.g. a Gaussian distribution).

Useful especially for large datasets.

From a density we can sample, that is,

generate new data.

We can also compute the likelihood

that a new point comes from the same

distribution.
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11.1 Gaussian mixture model

A Gaussian mixture model is a linear (convex) combination of K Gaussian distributions:

p(x |θ) =
K∑

k=1

πk N (x |µk ,Σk) with πk ∈ [0, 1] and
K∑

k=1

πk = 1

where θ = {xk ,Σk , πk : k = 1, . . . ,K} contains all the parameters of the model.

This gives us significantly more flexibility than a single unimodal Gaussian distribution.

Example

p(x |θ) = 0.5N (x |−2, 12 )

+ 0.2N (x |1, 2)

+ 0.3N (x |4, 1)
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11.2 Parameter estimation via maximum likelihood

Given a dataset X = {x1, . . . , xN} of points i.i.d. sampled from some distribution p(x),

our task is to represent the unknown p(x) by a GMM with K mixture components.

The idea is to find the maximum likelihood estimate θML of the GMM parameters.

The data is i.i.d., so p(X|θ) =
N∏

n=1

p(xn|θ) =
N∏

n=1

(
K∑

k=1

πk N (xn|µk ,Σk)

)

The log-likelihood is L(θ) =
N∑

n=1

log p(xn|θ) =
N∑

n=1

log
K∑

k=1

πk N (xn|µk ,Σk)

We’d like to find the gradient of L w.r.t. the model parameters θ, set it to 0, and

solve for θ. Unfortunately, here we cannot obtain a closed-form solution. Instead we

will use an iterative scheme, where the idea is to update one parameter at a time

while keeping the others fixed.
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The responsibility of the k-th mixture component for the n-th data point is defined as

rn,k =
πk N (xn|µk ,Σk)∑K
j=1 πj N (xn|µj ,Σj)

(rn,1, . . . , rn,K ) is a probability vector; a “soft assignment” of xn to the K components.

Updating the GMM means: µnew
k =

1

Nk

N∑
n=1

rn,k xn with Nk =
N∑

n=1

rn,k

Updating the GMM covariances: Σnew
k =

1

Nk

N∑
n=1

rn,k(xn − µk)(xn − µk)T

Updating the GMM mixture weights: πk =
Nk

N
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11.3 EM algorithm

Unfortunately, the updates on the previous slide are not a closed-form solution for the

parameters of the GMM, because the responsibilities rn,k depend on those parameters.

But they do suggest a simple iterative scheme, called expectation maximisation.

Choose initial values for µk , Σk , πk , and alternate until convergence between:

E-step: evaluate the responsibilities rn,k

M-step: use the updated responsibilities to re-estimate µk , Σk , πk
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