Mathematics for Machine Learning

Prof Willie Brink

Applied Mathematics, Stellenbosch University

Lecture 10: Density Estimation with GMMs

Contents of the module

Chapter 02: Linear Algebra

Chapter 03: Analytic Geometry

Chapter 04: Matrix Decompositions

Chapter 05: Vector Calculus

Chapter 06: Probability and Distributions

Chapter 07: Continuous Optimisation

Chapter 08: When Models Meet Data

Chapter 09: Linear Regression

Chapter 10: Dimensionality Reduction with Principal Component Analysis

Chapter 11: Density Estimation with Gaussian Mixture Models

Chapter 12: Classification with Support Vector Machines

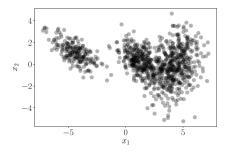
Introduction

The aim here is to represent a given dataset compactly using a probability density function from some parametric family (e.g. a Gaussian distribution).

Useful especially for large datasets.

From a density we can sample, that is, generate new data.

We can also compute the likelihood that a new point comes from the same distribution.



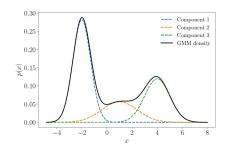
11.1 Gaussian mixture model

A Gaussian mixture model is a linear (convex) combination of K Gaussian distributions:

$$p(\pmb{x}|\pmb{ heta}) = \sum_{k=1}^K \pi_k \, \mathcal{N}(\pmb{x}|\pmb{\mu}_k, \pmb{\Sigma}_k) \quad ext{with} \quad \pi_k \in [0,1] \quad ext{and} \quad \sum_{k=1}^K \pi_k = 1$$

where $\theta = \{x_k, \Sigma_k, \pi_k : k = 1, ..., K\}$ contains all the parameters of the model.

This gives us significantly more flexibility than a single unimodal Gaussian distribution.



Example

$$\rho(x|\theta) = 0.5\mathcal{N}(x|-2,\frac{1}{2})$$
 $+ 0.2\mathcal{N}(x|1,2)$
 $+ 0.3\mathcal{N}(x|4,1)$

11.2 Parameter estimation via maximum likelihood

Given a dataset $\mathcal{X} = \{x_1, \dots, x_N\}$ of points i.i.d. sampled from some distribution p(x), our task is to represent the unknown p(x) by a GMM with K mixture components. The idea is to find the maximum likelihood estimate θ_{ML} of the GMM parameters.

The data is i.i.d., so
$$p(\mathcal{X}|\theta) = \prod_{n=1}^{N} p(\mathbf{x}_n|\theta) = \prod_{n=1}^{N} \left(\sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right)$$

The log-likelihood is
$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{n=1}^{N} \log p(\boldsymbol{x}_n | \boldsymbol{\theta}) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

We'd like to find the gradient of \mathcal{L} w.r.t. the model parameters θ , set it to $\mathbf{0}$, and solve for θ . Unfortunately, here we cannot obtain a closed-form solution. Instead we will use an iterative scheme, where the idea is to update one parameter at a time while keeping the others fixed.

The responsibility of the kth mixture component for the n-th data point is defined as

$$r_{n,k} = \frac{\pi_k \, \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \, \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

 $(r_{n,1},\ldots,r_{n,K})$ is a probability vector; a "soft assignment" of \mathbf{x}_n to the K components.

Updating the GMM means: $\mu_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^N r_{n,k} x_n$ with $N_k = \sum_{n=1}^N r_{n,k}$

Updating the GMM covariances: $\mathbf{\Sigma}_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^N r_{n,k} (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^{\mathsf{T}}$

Updating the GMM miture weights: $\pi_k = \frac{N_k}{N}$

11.3 EM algorithm

Unfortunately, the updates on the previous slide are not a closed-form solution for the parameters of the GMM, because the responsibilities $r_{n,k}$ depend on those parameters.

But they do suggest a simple iterative scheme, called expectation maximisation.

Choose initial values for μ_k , Σ_k , π_k , and alternate until convergence between:

E-step: evaluate the responsibilities $r_{n,k}$

M-step: use the updated responsibilities to re-estimate μ_k , Σ_k , π_k