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Introduction

The aim here is to represent a given dataset compactly using a probability density

function from some parametric family (e.g. a Gaussian distribution).

Useful especially for large datasets.

From a density we can sample, that is,
generate new data.

We can also compute the likelihood
that a new point comes from the same
distribution. H
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11.1 Gaussian mixture model

A Gaussian mixture model is a linear (convex) combination of K Gaussian distributions:

K
p(x|0) = Zwkj\f X|py, Xx) with m €[0,1] and » m =1
k=1 k=1
where 6 = {x;, Xy, mx : k =1,..., K} contains all the parameters of the model.

This gives us significantly more flexibility than a single unimodal Gaussian distribution.
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11.2 Parameter estimation via maximum likelihood

Given a dataset X = {x1,...,xy} of points i.i.d. sampled from some distribution p(x),
our task is to represent the unknown p(x) by a GMM with K mixture components.
The idea is to find the maximum likelihood estimate @y of the GMM parameters.

K
The data isi.i.d., so p(X|0) = H p(x,|0) = H (Zwk./\f(x,,mk,}:k))

k=1
N K

The log-likelihood is c(e):ngp(xnyo ZlogZWkN(x,,]uk,Zk)
n=1 n=1

We'd like to find the gradient of £ w.r.t. the model parameters 6, set it to 0, and
solve for 8. Unfortunately, here we cannot obtain a closed-form solution. Instead we
will use an iterative scheme, where the idea is to update one parameter at a time

while keeping the others fixed.
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The responsibility of the kth mixture component for the n-th data point is defined as

Tk N (Xl i, Zie)

rn,k - K
ZjZl WJN(XH|HJ'7 ZJ)
(fn1,.-.,rnk) is a probability vector; a “soft assignment” of x, to the K components.
1 & N
Updating the GMM means: p®" = m Z ok Xp with Ny = Z rok
n=1 n=1

N
1
Updating the GMM covariances: X} = N Z Pk (Xn = 1) (X0 — )"
n=1

N
Updating the GMM miture weights: 7 = Wk

6/7



11.3 EM algorithm

Unfortunately, the updates on the previous slide are not a closed-form solution for the

parameters of the GMM, because the responsibilities r, , depend on those parameters.
But they do suggest a simple iterative scheme, called expectation maximisation.

Choose initial values for p;, X, 7k, and alternate until convergence between:
E-step: evaluate the responsibilities rp x

M-step: use the updated responsibilities to re-estimate p,, Xy, 7k
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