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10.1 Problem setting

High-dimensional data is often overcomplete (many redundant dimensions), and may

occupy a much lower-dimensional subspace.

Consider data points x , . . . , xN in RD , with a mean of 0.

PCA: find projections x̃n of data points xn, that are similar to original data but have

a significantly lower intrinsic dimensionality.

Let B = [ b1, . . . , bM ] ∈ RD×M be a projection matrix with orthonormal columns,

where M � D. Our task will be to find this matrix B for a given dataset.

Encoding xn to a low-dimensional representation: zn = BTxn ∈ RM

Decoding zn in order to reconstruct xn: x̃n = Bzn = BBTxn ∈ RD
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10.2 Maximum variance perspective

Find a B that retains as much information as possible, i.e. captures the most variance.

Let’s start by finding a single vector b1 ∈ RD that maximises the variance of the first

coordinate z1 of the encodings (the first principal component).

V1 = V[z1] =
1

N

N∑
n=1

z21,n =
1

N

N∑
i=1

(
bT
1 xn

)2
= bT

1

(
1

N

N∑
n=1

xnxT
n

)
b1 = bT

1 Sb1

Solve the constrained optimisation problem: max
b1

bT
1 Sb1 subject to ‖b1‖2 = 1

Introducing a Lagrange multiplier λ1 and setting derivatives w.r.t. b1 and λ1 to 0, give

Sb1 = λ1b1, bTb = 1 and note then that V1 = λ1bT
1 b1 = λ1

Therefore we choose b1 as the eigenvector of S associated with its largest eigenvalue.
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b1 is the eigenvector of data covariance matrix S associated with its largest eigenvalue.

The second principal component, b2, will be the eigenvector of S associated with the

second largest eigenvalue, and so on.

The first M principal components form an ONB for an M-dimensional subspace of RD .

The maximum amount of variance that PCA can capture is VM =
M∑

m=1

λm

The variance lost by PCA’s compression is JM =
D∑

j=M+1

λj = VD − VM

Note: if the data is not centered at 0, we would first subtract the data mean µ from each xn

before forming S and finding B.

The encoding would then be zn = BT(xn − µ), and the decoding would be x̃n = Bzn + µ.
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10.3 Projection perspective

PCA can also be derived from the perspective of a linear encoder-decoder that mini-

mises the average reconstruction error.

The aim is to find vectors x̃n ∈ RD that lie in an M-dimensional subspace spanned by

an unknown ONB (b1, . . . ,bM), that is as close as possible to the original data xn, i.e.

that minimise the average reconstruction error:

1

N

N∑
n=1

‖xn − x̃n‖2

It turns out that for a given ONB an orthogonal projection gives the optimal encoding.

It also turns out that minimising the reconstruction error is equivalent to minimising the

variance we ignore when projecting to the subspace, leading to the same solution as be-

fore (eigenvectors of the data covariance matrix S).
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10.4 Eigenvector computation

Let X = [ x1, . . . , xN ] ∈ RD×N . We obtain the principal components as eigenvectors

of the data covariance matrix S , where

S =
1

N

N∑
n=1

xnxT =
1

N
XXT

Recall that the first M cols of U in the SVD of X give us exactly those eigenvectors!

The eigenvalues λm of S are related to the singular values σm of X via: λm = σ2m/N.

We would normally use the SVD of X to perform PCA, for its numerical stability and

computational efficiency (compared to an eigendecomposition of S).
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10.6 Key steps of PCA in practice

Given a dataset of points x1, . . . , xN in RD .

1. Mean subtraction

Center the data at 0 by subtracting the mean µ =
1

N

N∑
n=1

xn from each xn.

2. Standardisation

Divide each data point by the standard deviation σd for every dimension d = 1, . . . ,D.

Now the data has variance 1 along each axis.

3. Determining the principal components

Concatenate the centered, standardised data vectors as columns of X , and let B be

the first M columns of U in the SVD of X .
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4. Projection

Any point x ∈ RD (from the same data generating process as the given dataset) can

be encoded as a lower-dimensional vector: z = BTx∗, where x∗ has components

x
(d)
∗ =

x (d) − µd
σd

The vector z is an M-dimensional representation of the D-dimensional vector x .

5. Reconstruction

A representation z is transformed back to D-dimensional space by x̃∗ = Bz , and then

de-standardising:

x̃ (d) = x̃
(d)
∗ σd + µd

The vector x̃ might be an approximation of the original x from step 4.
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PCA on an image dataset

Dataset: · · ·

≈ + z1 + z2 + z3 + z4

x µ b1 b2 b3 b4

z = [ z1 z2 z3 z4 ]
T
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