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9.1 Problem formulation

Assume we have a set of training inputs x, € R and corresponding noisy observations
yn = f(x,) + €, where € is an i.i.d. random variable that describes noise.

The task is to find f that models the training data and generalises well to new data.

Let's assume a linear function y = x 70 + ¢, with € ~ N(0,52). Then

ply|x,0) =N(y|x76,0?)

where @ € RP are the parameters we seek.
We'll assume the noise variance o2 is known. - 0.0

Once we have optimal parameters 6%, we can

predict y for any input x.
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0.2 Parameter estimation

We note that y; and y; are conditionally independent given their inputs, so that

N
p(y\X,G):H./\/’(yn]xIG,Jz) with X' = {x1,..., xy}and Y ={y,..., N}

n=1

Maximum likelihood estimation : 0y = arg max p(Y|X,0)

We consider the negative log-likelihood, with X = [x1,...,xy]" and y = [y1,...,yn]":
N

1 Tp)2 1 2
E(G)z—logp()HX,B)z—Z{—w(yn—x,ﬁ) + const :@Hy—xeﬂ + const

n=1
We compute the gradient of £ with respect to 6, set it to 0, and solve for 6:

Om = (XTX) ' XTy
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I . o 1 x Xpw
Note: we can fit higher order polynomials using linear { !

regression. If our training set is X = {xy,...,xn}, we
may define X as shown on the right. Ll XN X/T/J

If the noise variance is unknown, we can also use MLE, by finding 9£/00?, setting it
to 0, and solving for o2, In this way, 0%, = % Zf,":l(yn —x'0)2.

Unfortunately, MLE is prone to overfitting when the number of parameters is high.

Maximum a posteriori estimation : Oyap = arg max p(@|X,))
To mitigate overfitting, we place a (conjugate) Gaussian prior 8: p(8) = N0, b>1)

Differentiate the negative log-posterior w.r.t. 8, set it to 0, and solve for 0:

Ouap = (XTX + 51)

1
XTy

5/6



9.3 Bayesian linear regression

Bayesian linear regression takes the full posterior distribution over 8 into account
(instead of a point estimate).

Our model: p(y,8|x) = p(y|x,0) p(6) = N'(y | x78,5%) N'(mo, So) (o]

o ) ] conjugate prior
To make predictions at input x,, we integrate 0 out: :c—»

plebx) = [ p(lx..6) p(6) d8

= /\/'(x;rmo, xISox* + a2>

When we have the parameter posterior p(6|X,)), we can replace the prior p(0) in
the above with it.
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