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9.1 Problem formulation

Assume we have a set of training inputs xn ∈ RD and corresponding noisy observations

yn = f (xn) + ε, where ε is an i.i.d. random variable that describes noise.

The task is to find f that models the training data and generalises well to new data.

Let’s assume a linear function y = xTθ + ε, with ε ∼ N (0, σ2). Then

p(y | x ,θ) = N (y | xTθ, σ2)

where θ ∈ RD are the parameters we seek.

We’ll assume the noise variance σ2 is known.

Once we have optimal parameters θ∗, we can

predict y for any input x .
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9.2 Parameter estimation

We note that yi and yj are conditionally independent given their inputs, so that

p(Y |X ,θ) =
N∏

n=1

N (yn | xT
n θ, σ

2) with X = {x1, . . . , xN} and Y = {y1, . . . , yN}

Maximum likelihood estimation : θML = arg max
θ

p(Y |X ,θ)

We consider the negative log-likelihood, with X = [x1, . . . , xN ]T and y = [y1, . . . , yN ]T:

L(θ) = − log p(Y |X ,θ) = −
N∑

n=1

[
− 1

2σ2
(yn − xT

n θ)2 + const

]
=

1

2σ2
‖y − Xθ‖2 + const

We compute the gradient of L with respect to θ, set it to 0, and solve for θ:

θML =
(
XTX

)−1 XTy
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Note: we can fit higher order polynomials using linear

regression. If our training set is X = {x1, . . . , xN}, we

may define X as shown on the right.

X =


1 x1 · · · xp1
...

...
. . .

...

1 xN · · · xpN


If the noise variance is unknown, we can also use MLE, by finding ∂L/∂σ2, setting it

to 0, and solving for σ2. In this way, σ2ML = 1
N

∑N
n=1(yn − xT

n θ)2.

Unfortunately, MLE is prone to overfitting when the number of parameters is high.

Maximum a posteriori estimation : θMAP = arg max
θ

p(θ | X ,Y)

To mitigate overfitting, we place a (conjugate) Gaussian prior θ: p(θ) = N0, b2I )

Differentiate the negative log-posterior w.r.t. θ, set it to 0, and solve for θ:

θMAP =
(
XTX + σ2

b2
I
)−1

XTy
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9.3 Bayesian linear regression

Bayesian linear regression takes the full posterior distribution over θ into account

(instead of a point estimate).

Our model: p(y ,θ|x) = p(y |x ,θ) p(θ) = N (y | xTθ, σ2)N (m0,S0)      

conjugate prior
To make predictions at input x∗, we integrate θ out:

p(y∗|x∗) =

∫
p(y∗|x∗,θ) p(θ) dθ

= N
(
xT
∗ m0, xT

∗ S0x∗ + σ2
)

When we have the parameter posterior p(θ|X ,Y), we can replace the prior p(θ) in

the above with it.
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