
Mathematics for Machine Learning

Prof Willie Brink
Applied Mathematics, Stellenbosch University

Lecture 7: When Models Meet Data

.

1/12



Contents of the module

Chapter 02: Linear Algebra

Chapter 03: Analytic Geometry

Chapter 04: Matrix Decompositions

Chapter 05: Vector Calculus

Chapter 06: Probability and Distributions

Chapter 07: Continuous Optimisation

Chapter 8: When Models Meet Data

Chapter 09: Linear Regression

Chapter 10: Dimensionality Reduction with Principal Component Analysis

Chapter 11: Density Estimation with Gaussian Mixture Models

Chapter 12: Classification with Support Vector Machines

2/12



8.1 Data, models, and learning

We will think of data as N vectors: each input xn is a D-dimensional vector of real

numbers (features, attributes, covariates).

In the supervised learning setting, we have a label (target, response, annotation) yn

associated with each xn.

A guiding principle of machine learning is that good models should generalise, that is,

perform well (predict labels accurately) on data not seen during training.

The model might be a function: f : RD → R
We often consider linear functions f (x) = θTx + θ0, with unknown θ and θ0.

Or the model might be a probability distribution, describing the distribution of possible

functions and able to express uncertainty in predictions.
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Prediction is when we use a trained model on new input data. For probabilistic models,

prediction is called inference.

Training is when we estimate the parameters of the model, based on training data, by

means of empirical risk minimisation or the principle of maximum likelihood.

Choosing an appropriate model is called model selection, and picking an appropriate

structure (e.g. number of parameters, or distribution class) is hyperparameter tuning.
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8.2 Empirical risk minimisation

Consider the case of a predictor that is a function, in the supervised learning setting

where we have data (x1, y1), . . . , (xN , yN).

Want to estimate the parameters θ of a predictor f (·,θ), such that we fit the data well:

f (xn,θ
∗) = ŷn ≈ yn for all n = 1, . . . ,N

For some loss (or error) `(yn, ŷn), we may attempt to minimise the empirical risk:

Remp(f ,X ,Y) =
1

N

N∑
n=1

`(yn, ŷn)

We would actually want a predictor that minimises the expected risk over the infinite

set of all possible data and labels, but that’s not directly possible.
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Empirical risk minimisation can lead to overfitting on the training set (the empirical

risk underestimates the expected risk).

Regularisation: introduce a penalty term to make it harder for the optimiser to return

an overly flexible predictor.

Can use K -fold cross-validation to assess the generalisation error:

• divide the training data into K chunks; train on K − 1 of them, use the remaining

• one for validation to measure the risk on unseen data

• repeat for all K choices of the validation set, and average the performance of the

• model from the K runs

6/12



8.3 Parameter estimation

Maximum likelihood and priors are analogous to loss functions and regularisation.

Maximum likelihood estimation

The likelihood p(x |θ) models the uncertainty of the data for a given parameter setting.

Maximum likelihood estimation: find parameter setting θ∗ that “most likely” generated

a given dataset x .

In supervised learning, we want a predictor that takes input vector xn and produces a

probability distribution of the label yn.

Assuming i.i.d. (independent, identically distributed) data samples, the

likelihood involving the dataset factorises into a product of likelihoods:
N∏

n=1

p(yn|xn,θ)
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In machine learning we often consider the negative log-likelihood:

L(θ) = − log
N∏

n=1

p(yn|xn,θ) = −
N∑

n=1

log p(yn|xn,θ)

Minimising L(θ) is the same as finding the maximum likelihood estimation of θ.

Maximum a posteriori estimation

If we have prior knowledge about the distribution of θ, we can multiply the likelihood

by p(θ). Recall Bayes’ theorem: p(θ|x) ∝ p(x |θ)p(θ).

Now we’ll find a parameter setting θ∗ that minimises the negative log-posterior, leading
to the maximum a posteriori estimate.

Here it might be convenient to choose a conjugate prior, if possible.
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Model fitting

Overfitting refers to the situation where the parametrised model class is too rich to

model the dataset, and fits to noise in the training set.

Underfitting is the opposite problem, where the model class is not rich enough, or not

sufficiently flexible to model the data.

In practice we often define very rich model classes with many parameters (such as

deep neural networks), and use regularisation or priors to mitigate overfitting.
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8.4 Probabilistic modelling and inference

In probabilistic modelling, the joint distribution p(x ,θ) of observed variables x and

hidden parameters θ is of central importance. It encapsulates the prior, the likelihood,

marginals, and the posterior.

Unlike MLE and MAP that return a point estimate θ∗, Bayesian inference is about

finding the posterior distribution. In doing this, uncertainty in parameters can be

propagated to predictions, for more robust decision making.

Where MLE and MAP may require optimisation, Bayesian inference typically requires

integration which can be practially challenging. May need to resort to

• stochastic approximations (e.g. Markov chain Monte Carlo),

• or deterministic approximations (e.g. variational inference).
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8.5 Directed graphical models

A graphical model visually captures how the joint distribution over random variables

can be decomposed into factors depending on only a subset of the variables.

• nodes are random variables x1, . . . , xK (nodes of observed variables are shaded)

• directed links indicate conditional probabilities

The joint distribution p(x1, . . . , xK ) corresponding to a graphical model would be

p(x) =
K∏
i=1

p(xk |Pak) with Pak the parents of xk (nodes with arrows pointing to xk)

p(x1, . . . , x5) = p(x1) p(x2|x5) p(x3|x1, x2) p(x4|x2) p(x5)
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8.6 Model selection

Nested cross-validation can be implemented to for choosing a best model (with an

inner loop that tests hyperparameters of a particular model).

Simpler models tend to be less prone to overfitting. An objective of model selection

can be to find the simplest model that explains the data well (Occam’s razor).

In Bayesian model selection, complex and very expressive models may automatically

turn out to be a less probable choice for modelling a given dataset.
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