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Introduction

Machine learning often boils down to finding a good set of parameters for a model

(e.g. a neural network or a probabilistic model).

We define an objective function, and minimise it using numerical optimisation:

e initialise and then iteratively update the parameter values.

The gradient of the objective function w.r.t. the parameters will be particularly useful
in indicating which direction to update the parameters.

A step size (a.k.a. the learning rate) dictates the speed of updates.
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7.1 Optimisation using gradient descent

Let f : RY — R be differentiable, and consider the minimisation problem: min f(x)

Gradient descent starts with an initial guess xq, then iterates:
T
Xj+1 = Xj — 7,.((Vf)(x,-))

For suitable step-size ;, the sequence f(xp), f(x1),... converges to a local minimum.

Gradient descent can be slow close to the minimum. For poorly conditioned problems, it may

“zig-zag" as the gradients are nearly orthogonal to the shortest distance to the minimum point.

Choosing an appropriate step-size, a.k.a. learning rate, is important!
e too small, and GD can be slow

e too large, and GD can overshoot, fail to converge, or diverge
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Adaptive learning rate

o When the function f increases after a gradient step, the step-size was too large.
Undo the step and decrease the step-size.

e When the function f decreases, the step could have been larger.
Try to increase the step-size.

Momentum
The curvature of the optimisation surface may cause GD to hop over the minimum.

Let's introduce an extra term to remember what happened in the previous iteration:

T :
xit1 = x; —vi((V)(xi)) " +alxi —xj-1)  with a € [0,1]
This combination of current and previous gradients dampens oscillations in the updates.
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Stochastic gradient descent

In machine Iearning the objective function f is often an average over training samples:
f(x)= ZL(X and Vf(x ZVL

We can get an inexpensive, unbiased estimate of the gradient by sampling m data points.
m = N: batch gradient descent
m < N: mini-batch gradient descent

m =1 : stochastic gradient descent (online)

Can be very effective in large-scale deep learning, and may enable escape from undesired
stationary points. Small mini-batches also give a more noisy estimate of the gradient,
which can provide regularisation.
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7.2 Constrained optimisation and Lagrange multipliers

Consider the following constrained optimisation problem:

min f(x) subject to gi(x) <0, i=1,....m
X

This “primal problem” can be converted to its associated Lagrangian dual problem:

i f Aigi bjectto \; >0, i=1,...,
max [;2&((@—1—; g(x))] subject to i m

When the inner minimisation problem is easy to solve, the overall problem is easy to

solve (the outer maximisation problem involves a convex function in X).
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7.3 Convex optimisation

C is a convex set if for any x,y € C and 6 € [0, 1], we have that 6x + (1 —6)y € C.

The function f : R? — R whose domain is a convex set is a convex function if for all
x,y in the domain of f, and 0 € [0, 1] we have

f(0x +(1—0)y) <Of(x)+(1—06)f(y) [aform of Jensen's inequality |

A differentiable function f is convex if and only if, for any x, y in the domain of f,

F(y) > (x) + Vif(x)T(y — x)

Optimisation problems involving convex functions 7(-) and g;() are particularly useful,

since we can guarantee global optimality.

Examples: linear and quadratic programming (sections 7.3.1 and 7.3.2)
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