
Mathematics for Machine Learning

Prof Willie Brink
Applied Mathematics, Stellenbosch University

Lecture 6: Continuous Optimisation

.

1/8

Contents of the module

Chapter 02: Linear Algebra

Chapter 03: Analytic Geometry

Chapter 04: Matrix Decompositions

Chapter 05: Vector Calculus

Chapter 06: Probability and Distributions

Chapter 7: Continuous Optimisation

Chapter 08: When Models Meet Data

Chapter 09: Linear Regression

Chapter 10: Dimensionality Reduction with Principal Component Analysis

Chapter 11: Density Estimation with Gaussian Mixture Models

Chapter 12: Classification with Support Vector Machines

2/8

Introduction

Machine learning often boils down to finding a good set of parameters for a model

(e.g. a neural network or a probabilistic model).

We define an objective function, and minimise it using numerical optimisation:

• initialise and then iteratively update the parameter values.

The gradient of the objective function w.r.t. the parameters will be particularly useful

in indicating which direction to update the parameters.

A step size (a.k.a. the learning rate) dictates the speed of updates.

3/8

7.1 Optimisation using gradient descent

Let f : Rd → R be differentiable, and consider the minimisation problem: min
x

f (x)

Gradient descent starts with an initial guess x0, then iterates:

x i+1 = x i − γi
(
(∇f)(x i)

)T
For suitable step-size γi , the sequence f (x0), f (x1), . . . converges to a local minimum.

Gradient descent can be slow close to the minimum. For poorly conditioned problems, it may

“zig-zag” as the gradients are nearly orthogonal to the shortest distance to the minimum point.

Choosing an appropriate step-size, a.k.a. learning rate, is important!

• too small, and GD can be slow

• too large, and GD can overshoot, fail to converge, or diverge

4/8

Adaptive learning rate

• When the function f increases after a gradient step, the step-size was too large.

• Undo the step and decrease the step-size.

• When the function f decreases, the step could have been larger.

• Try to increase the step-size.

Momentum

The curvature of the optimisation surface may cause GD to hop over the minimum.

Let’s introduce an extra term to remember what happened in the previous iteration:

x i+1 = x i − γi
(
(∇f)(x i)

)T
+ α(x i − x i−1) with α ∈ [0, 1]

This combination of current and previous gradients dampens oscillations in the updates.

5/8

Stochastic gradient descent

In machine learning the objective function f is often an average over training samples:

f (x) =
1

N

N∑
i=1

Li (x) and ∇f (x) =
1

N

N∑
i=1

∇Li (x)

We can get an inexpensive, unbiased estimate of the gradient by sampling m data points.

m = N : batch gradient descent

m < N : mini-batch gradient descent

m = 1 : stochastic gradient descent (online)

Can be very effective in large-scale deep learning, and may enable escape from undesired

stationary points. Small mini-batches also give a more noisy estimate of the gradient,

which can provide regularisation.

6/8

7.2 Constrained optimisation and Lagrange multipliers

Consider the following constrained optimisation problem:

min
x

f (x) subject to gi (x) ≤ 0, i = 1, . . . ,m

This “primal problem” can be converted to its associated Lagrangian dual problem:

max
λ∈Rm

[
min
x∈Rd

(
f (x) +

m∑
i=1

λigi (x)

)]
subject to λi ≥ 0, i = 1, . . . ,m

When the inner minimisation problem is easy to solve, the overall problem is easy to

solve (the outer maximisation problem involves a convex function in λ).

7/8

7.3 Convex optimisation

C is a convex set if for any x , y ∈ C and θ ∈ [0, 1], we have that θx + (1− θ)y ∈ C .

The function f : Rd → R whose domain is a convex set is a convex function if for all

x , y in the domain of f , and θ ∈ [0, 1] we have

f
(
θx + (1− θ)y

)
≤ θf (x) + (1− θ)f (y) [a form of Jensen’s inequality]

A differentiable function f is convex if and only if, for any x , y in the domain of f ,

f (y) ≥ (x) +∇x f (x)T(y − x)

Optimisation problems involving convex functions f (·) and gi (·) are particularly useful,

since we can guarantee global optimality.

Examples: linear and quadratic programming (sections 7.3.1 and 7.3.2)

8/8

