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5.1 Differentiation of univariate functions

For now we think of a function as a mapping f : R? = R, e.g. y = f(x).

f f h)—f
The derivative of a univariate (D = 1) function f at x: ar _ lim (x+h) = f(x)
dx  h—0 h

fis df /dx, f() is the derivative of f’, ..., f(¥) is the kth derivative of f

(k) (x
f k(! 0)(X_X°)k

n
The Taylor polynomial of degree nof f : R — R is Tp(x) = Z
It is an approximation of f around xp. k=0
For an infinitely differentiable 7, the Taylor series at xg is obtained when n — oc.
/ ! ’
Product: (f(x)g(x)) = f'(x)g(x) + f(x)g’(x). Quotient: (%) = FXebd—f(x)g (x) (X)g((’;)(;;)(zx)g (|
Sum: (f(x) +g(x))" = '(x) + g'(x). Chain: (g(f(x)))" = (g o ) (x) = &'(f(x))f'(x).



5.2 Partial differentiation and gradients

The partial derivatives of f : R” — R of n variables x = (x1,...,x,) are
of . x4 hyxa, .. xn) — F(X) of . (X1, oy Xn—1,Xn + h) — f(x)
_— ||m , cee == ||m
(9X1 h—0 h 3X,, h—0 h

The gradient (or Jacobian) of f is the row vector

. . df . of of of 1xn Let f : R?> = R be a function of
Vxf = gradf = dx 6_)(1 8_X2 Oxp €R x1 and xz, and suppose xi(t) and
x>(t) are functions of t. Then
df df dx
0 of 0 — = o or
Product rule: —(f(x)g(x)) = —g(x) + —gf(x) dt  dxdt
Ox 0x 0x o ox
_ | of of at
9 9 9 OF a {(‘)Xl (‘)XQ} L))XZ}
, g '
Chain rule: a—x(g(f(x))) = a—x(go f)(x) = 9 Ox COfoxi | Of D%
a ox1 Ot Ox> Ot




5.3 Gradients of vector-valued functions

Next we generalise the concept of a gradient to vector-valued functions f : R” — R™.

X1 f]_(X)
For such an f, and vector x = | : | € R", we have f(x) = : eR™.

Xn fm(x)

The Jacobian of f is the gradient of f with respect to x:

ot Oh
df [ of of 0% O

J =V, f= df = 87 3 = ; :
X & %o of, of,

T B
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5.4 Gradients of matrices

Computing the gradient of an m x n matrix A with respect to a p X g matrix B

results in a (m x n) x (p x q) Jacobian tensor with elements Jjjxp = 0A;j/OBxy.

% e ]R4><2
613 E & R4><2><3
% € R¥*2 dzx
0,
2 collate
A y
AER™ zcR’ il
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5.5 Useful identities for computing gradients

aixf(X)T = <£( f(X))T %xTa =a'

et F00) =t (5 F00)) D aTx=a"

SR AEHFO0) = det ()t (FOO 2 F(X)) ™ Xb = ab”
aixf(x)fl =—f(X)! (aaxf(X)) f(x)! %XTBX =x"(B+B")
aix‘-,,Txflb = (X HTab"(x 1T %(x — As)" W (x — As)

= —2(x — As)TWA for symm. W



5.6 Backpropagation and automatic differentiation

When training deep neural networks we often use gradient descent to find parameters
that minimise a loss function. This requires the computation of gradients, for which
backpropagation is particularly efficient.

Consider a network with K layers, mapping input x = fg to output y = f, as follows:
fi=o0i(Ai_1fi-1+bi1), i=1....K

We want parameters @ = {Ao, by, ..., Ax_1,bk_1} that minimise the squared loss
L(8) = [ly — fx(8,x)|?

Ao, by Apby Ag 5,bx o Ag-1,brx1



To find the gradients w.r.t. parameters 8, we need the partial derivatives of L w.r.t.

the parameters 8; = {A;, b;} of each layer j =0,..., K — 1.

. _ oL oL oOfk
Using the chain rule, 90k_1  OFx 00x_1
oL _ OL| Ofk Ofks
00k_>  Ofk 902
oL _ oL Of k2
89K73 afK 89K73

etc.

Most of the computation for 0L/00;,1 can be reused when computing 9L/080;.

Automatic differentiation: decompose a complicated function (or programme) into a

computational graph of primitive operations.

Backprop through the graph, for efficient and accurate calculation of the gradient!



5.7 Higher-order derivatives

Consider a function f : R> — R of two variables x and y.

P o o
Ox2' Oy?' OxOy' Oydx
. . . . . 0> f 0% f

If f is twice continuously differentiable, then ()— = ‘()‘
Oxdy  OJyOx

Second-order partial derivatives of f:

?r o o
. ) o 0x%2  Oxdy

The Hessian collects all second-order partial derivatives: H =
or o
Ox0y  Oy?

If f:R" — R™, the Hessian is an (m x n x n) tensor.
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5.8 Linearisation and multivariate Taylor series

The gradient Vf is often used for a locally linear approximation of f around xg:

f(x) =~ f(x0) + (Vxf)(x0)(x — x0) where (V,)(xp) is the gradient of f at xg

This is the first-order truncation of the multi-
variate Taylor series expansion of f at xq:

f(X) _ i D)éf(xo)ék

k! flav) + f'(zo)( = 20)
k=0
where DXf(xq) is the k-th (total) derivative
of f with respect to x, evaluated at xg, and ‘ z

8" is a k-fold outer product of the vector
0 = (x — xp).
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