
Mathematics for Machine Learning

Prof Willie Brink
Applied Mathematics, Stellenbosch University

Lecture 4: Vector Calculus

.

1/11

Contents of the module

Chapter 02: Linear Algebra

Chapter 03: Analytic Geometry

Chapter 04: Matrix Decompositions

Chapter 5: Vector Calculus

Chapter 06: Probability and Distributions

Chapter 07: Continuous Optimisation

Chapter 08: When Models Meet Data

Chapter 09: Linear Regression

Chapter 10: Dimensionality Reduction with Principal Component Analysis

Chapter 11: Density Estimation with Gaussian Mixture Models

Chapter 12: Classification with Support Vector Machines

2/11

5.1 Differentiation of univariate functions

For now we think of a function as a mapping f : RD → R, e.g. y = f (x).

The derivative of a univariate (D = 1) function f at x :
df

dx
= lim

h→0

f (x + h)− f (x)

h

f ′ is df /dx , f (2) is the derivative of f ′, . . ., f (k) is the kth derivative of f

The Taylor polynomial of degree n of f : R→ R is Tn(x) =
n∑

k=0

f (k)(x0)

k!
(x − x0)k

It is an approximation of f around x0.

For an infinitely differentiable f , the Taylor series at x0 is obtained when n→∞.

Product: (f (x)g(x))′ = f ′(x)g(x) + f (x)g ′(x). Quotient:
(

f (x)
g(x)

)′
= f ′(x)g(x)−f (x)g ′(x)

(g(x))2 .

Sum: (f (x) + g(x))′ = f ′(x) + g ′(x). Chain: (g(f (x)))′ = (g ◦ f)′(x) = g ′(f (x))f ′(x).

3/11

5.2 Partial differentiation and gradients

The partial derivatives of f : Rn → R of n variables x = (x1, . . . , xn) are

∂f

∂x1
= lim

h→0

f (x1 + h, x2, . . . , xn)− f (x)

h
, . . . ,

∂f

∂xn
= lim

h→0

f (x1, . . . , xn−1, xn + h)− f (x)

h

The gradient (or Jacobian) of f is the row vector

∇x f = grad f =
df

dx
=

[
∂f

∂x1

∂f

∂x2
· · · ∂f

∂xn

]
∈ R1×n

Product rule:
∂

∂x
(f (x)g(x)) =

∂f

∂x
g(x) +

∂g

∂x
f (x)

Chain rule:
∂

∂x
(g(f (x))) =

∂

∂x
(g ◦ f)(x) =

∂g

∂f

∂f

∂x

Let f : R2 → R be a function of

x1 and x2, and suppose x1(t) and

x2(t) are functions of t. Then

df

dt
=

df

dx
dx
dt

df

dt
=

[
∂f

∂x1

∂f

∂x2

][∂x1
∂t

∂x2
∂t

]
df

dt
=

∂f

∂x1

∂x1
∂t

+
∂f

∂x2

∂x2
∂t

4/11

5.3 Gradients of vector-valued functions

Next we generalise the concept of a gradient to vector-valued functions f : Rn → Rm.

For such an f , and vector x =

x1...
xn

 ∈ Rn, we have f (x) =

 f1(x)
...

fm(x)

 ∈ Rm.

The Jacobian of f is the gradient of f with respect to x :

J = ∇x f =
df
dx

=

[
∂f
∂x1

· · · ∂f
∂xn

]
=


∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fm
∂x1

· · · ∂fm
∂xn


5/11

5.4 Gradients of matrices

Computing the gradient of an m × n matrix A with respect to a p × q matrix B
results in a (m × n)× (p × q) Jacobian tensor with elements Jijk` = ∂Aij/∂Bk`.

6/11

5.5 Useful identities for computing gradients

∂

∂X
f (X)T =

(
∂

∂X
f (X)

)T

∂

∂X
tr(f (X)) = tr

(
∂

∂X
f (X)

)
∂

∂X
det(f (X)) = det(f (X)) tr

(
f (X)−1

∂

∂X
f (X)

)
∂

∂X
f (X)−1 = −f (X)−1

(
∂

∂X
f (X)

)
f (X)−1

∂

∂X
aTX−1b = −(X−1)TabT(X−1)T

∂

∂x
xTa = aT

∂

∂x
aTx = aT

∂

∂X
aTXb = abT

∂

∂x
xTBx = xT(B + BT)

∂

∂s
(x − As)TW (x − As)

= −2(x − As)TWA for symm. W

7/11

5.6 Backpropagation and automatic differentiation

When training deep neural networks we often use gradient descent to find parameters

that minimise a loss function. This requires the computation of gradients, for which

backpropagation is particularly efficient.

Consider a network with K layers, mapping input x = f 0 to output y = f K as follows:

f i = σi (Ai−1f i−1 + bi−1), i = 1, . . . ,K

We want parameters θ = {A0,b0, . . . ,AK−1,bK−1} that minimise the squared loss

L(θ) = ‖y − f K (θ, x)‖2

8/11

To find the gradients w.r.t. parameters θ, we need the partial derivatives of L w.r.t.

the parameters θj = {Aj ,bj} of each layer j = 0, . . . ,K − 1.

Using the chain rule,
∂L

∂θK−1
=

∂L

∂f K

∂f K

∂θK−1

∂L

∂θK−2
=

∂L

∂f K

∂f K

∂f K−1

∂f K−1

∂θK−2

∂L

∂θK−3
=

∂L

∂f K

∂f K

∂f K−1

∂f K−1

∂f K−2

∂f K−2

∂θK−3
etc.

Most of the computation for ∂L/∂θi+1 can be reused when computing ∂L/∂θi .

Automatic differentiation: decompose a complicated function (or programme) into a

computational graph of primitive operations.

Backprop through the graph, for efficient and accurate calculation of the gradient!

9/11

5.7 Higher-order derivatives

Consider a function f : R2 → R of two variables x and y .

Second-order partial derivatives of f :
∂2f

∂x2
,
∂2f

∂y2
,

∂2f

∂x∂y
,

∂2f

∂y∂x

If f is twice continuously differentiable, then
∂2f

∂x∂y
=

∂2f

∂y∂x

The Hessian collects all second-order partial derivatives: H =


∂2f

∂x2
∂2f

∂x∂y

∂2f

∂x∂y

∂2f

∂y2


If f : Rn → Rm, the Hessian is an (m × n × n) tensor.

10/11

5.8 Linearisation and multivariate Taylor series

The gradient ∇f is often used for a locally linear approximation of f around x0:

f (x) ≈ f (x0) + (∇x f)(x0)(x − x0) where (∇x f)(x0) is the gradient of f at x0

This is the first-order truncation of the multi-

variate Taylor series expansion of f at x0:

f (x) =
∞∑
k=0

Dk
x f (x0)

k!
δk

where Dk
x f (x0) is the k-th (total) derivative

of f with respect to x , evaluated at x0, and

δk is a k-fold outer product of the vector

δ = (x − x0).

11/11

