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4.1 Determinant and trace

The determinant of a square matrix A ∈ Rn×n is a real number det(A) = |A| related

to the existence of an inverse: A is invertible if and only if det(A) 6= 0.

If A ∈ R2×2, det(A) = a11a22 − a12a21

If A ∈ R3×3, det(A) = a11a22a33 + a21a32a13 + a31a12a23

− a31a22a13 − a11a32a23 − a21a12a33
Sarrus’ rule

If T ∈ Rn×n is upper-triangular (ti ,j = 0 for i > j) or lower-triangular (ti ,j = 0, i < j),

det(T ) =
n∏

i=1

ti ,i

det(A) is the signed volume of an n-dimensional

parallelepiped formed by columns of A.
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Laplace expansion allows us to compute the determinant of an n × n matrix in terms

of the determinant of an (n − 1)× (n − 1) matrix.

Expansion along column j : det(A) =
n∑

k=1

(−1)k+jak,jdet(Ak,j)

where Ak,j is A with row k and column j deleted. Expansion along a row is similar.

det(AB) = det(A)det(B). det(AT) = det(A). If A is invertible, det(A−1) = 1/det(A).

Multiplication of a row/col by λ ∈ R scales det(A) by λ, hence det(λA) = λndet(A).

A square matrix A has det(A) 6= 0 if and only if rk(A) = n.

That is to say, A is invertible if and only if it is full rank.

The trace of a square matrix A, tr(A), is the sum of the diagonal elements of A.

Trace is invariant under cyclic permutations of factors: tr(ABC ) = tr(BCA)
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4.2 Eigenvalues and eigenvectors

Let A ∈ Rn×n. Then λ ∈ R is an eigenvalue of A, with corresponding eigenvector

x ∈ Rn\{0}, if Ax = λx .

Note: if x is an eigenvector of A, then so is cx for any c ∈ R\{0}.

Eigenvalues are the roots of the characteristic polynomial of A: pA(λ) = det(A− λI n)

Every eigenvalue has an algebraic multiplicity.

All eigenvectors associated with an eigenvalue λ forms the eigenspace of A w.r.t. λ.

It is the solution space of the system (A− λI n)x = 0, i.e. the null space of A− λI n.

Its dimension is called the geometric multiplicity of λ.

A and AT have the same eigenvalues, but not necessarily the same eigenvectors.

Symmetric, positive definite matrices always have positive, real eigenvalues.
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Geometrically, the eigenvector corresponding to a nonzero eigenvalue points in a

direction that is stretched by the linear mapping A. The eigenvalue is the factor by

which it is stretched (can be negative).

A ∈ Rn×n is defective if it possesses fewer than n linearly independent eigenvectors.

The eigenvectors of a matrix A ∈ Rn×n with n distinct eigenvals are linearly independent.

From a matrix A ∈ Rm×n we can always form a symmetric, positive semidefinite matrix

S ∈ Rn×n as S = ATA. If rk(A) = n, S will be symmetric, positive definite.

Spectral theorem: if An×n is symmetric, there exists an ONB of the vector space consis-

ting of eigenvectors of A, and each eigenvalue is real.

For any matrix A ∈ Rn×n with (possibly repeating) eigenvalues λi ,

det(A) =
n∏

i=1

λi and tr(A) =
n∑

i=1

λi
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Google’s PageRank algorithm

Importance of a web page is defined by the importance of the pages that link to it.

Express the web as a huge directed graph of which pages linking to which.

PageRank will compute an importance xi ≥ 0 for each page i .

Count the number of web pages pointing to i and model a user’s navigation by a

transition matrix A, with columns summing to 1 and ai ,j the probability of navigating

from page i to page j .

A has the property that Ax , A2x , A3x , . . . converges to vector x∗. It satisfies

Ax∗ = x∗, that is, x∗ is an eigenvector of A corresponding to eigenvalue 1.

Normalising x∗ (such that ‖x∗‖ = 1) gives the PageRank of all pages as probabilities.

7/16



4.3 Cholesky decomposition

A symmetric, positive definite matrix A can be factorised uniquely as A = LLT,

where L is lower-triangular with positive diagonal elements.

Various algorithms for computing L, including a modification of Gaussian elimination.

Note that det(A) = det(L)det(LT) = det(L)2.

Since L is lower-triangular, det(A) is the square of the product of L’s diagonal elements.

Applications in machine learning:

• Cholesky decomposition of a covariate matrix allows us to generate samples from

• a multivariate Gaussian

• used in deep stochastic models (e.g. VAEs) to compute gradients
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4.4 Eigendecomposition and diagonalisation

A diagonal matrix D ∈ Rn×n has zero on all off-diagonal elements.

• det(D) is the product of the diagonal elements;

• Dk is given by each diagonal element to the power k ;

• D−1 is the reciprocals of the diagonal elements if they are all nonzero.

Matrix A ∈ Rn×n is diagonalisable if there exists an invertible matrix P ∈ Rn×n such

that D = P−1AP is diagonal.

Note that if D has the eigenvalues of A on its diagonal, and P the corresponding

eigenvectors of A as columns, then AP = PD. So for A to be diagonalisable, it must

have n linearly independent eigenvectors (so that the inverse of P exists).

From the spectral theorem we have that every symmetric matrix is diagonalisable.
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The eigendecomposition of A is A = PDP−1, where D is diagonal with the eigenvalues

of A on its diagonal and P the corresponding eigenvectors of A as its columns.

If A is symmetric, P will be orthogonal so that A = PDPT.

Geometrically, transformations with A would be the same as:

1. performing a basis change from the standard basis to the eigenbasis (P−1)

2. scaling along those axes by the eigenvalues (D)

3. transforming back into the standard coordinates (P)

If it exists, the eigendecomposition allows for efficient computation of matrix powers

and the determinant.

But this decomposition requires the matrix A to be square...
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4.5 Singular value decomposition

The SVD of a rectangular matrix A ∈ Rm×n of rank r ≤ min{m, n}, is of the form

A = UΣV T

where U ∈ Rm×m is orthogonal, with the left-singular vectors of A as columns (u i )

Σ ∈ Rm×n contains the singular values of A on the diagonal and zeros elsewhere

V ∈ Rn×n is orthogonal, with the right-singular vectors of A as columns (v j)

The singular values are non-negative, and by convention in non-increasing order:

σ1 ≥ σ2 ≥ . . . σmin{m,n} ≥ 0

The SVD exists for any matrix A ∈ Rm×n.

Geometric intuition: a basis change via V T, followed by a scaling and augmentation

(or reduction) in dimensionality via Σ, and then a second basis change via U .
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Construction of the SVD

From any A ∈ Rm×n we can construct a symmetric, positive definite matrix ATA
with eigendecomposition: ATA = PDPT (?)

Assuming A can be written in the form UΣV T,

ATA = (UΣV T)TUΣV T = V ΣTUTUΣV T = V ΣTΣV T since UTU = Im

Compare with (?) : V = P and ΣTΣ = D

The diagonal elements of Σ are the positive square roots of the eigenvalues of ATA.

The columns of V are the eigenvectors of ATA (ordered appropriately).

Similarly, from the eigendecomposition of the symmetric, positive definite matrix AAT

we find that the columns of U are the eigenvectors of AAT.
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Consider again an m × n matrix A of rank r . Because of the many zeros in Σ, some

columns of U or rows in V T may be redundant (in certain applications).

If r < min{m, n}, even more columns and rows can be removed.

The reduced SVD is A = U rΣrV T
r , where

U r is an m × r matrix consisting of the first r columns of U ,

Σr is an r × r diagonal matrix with σ1, . . . , σr on the diagonal,

and V r is an n × r matrix consisting of the first r columns of V .

Applications of the SVD in machine learning:

• solving general linear systems, also in the least-squares sense

• low-rank matrix approximation for dimensionality reduction, topic modelling, data

• compression, clustering
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Finding structure in movie ratings

n viewers rate m movies out of 5. We encode this in a data matrix A ∈ Rm×n, and SVD.

The columns u i of U are stereotypical movies, and the columns v j of V stereotypical viewers.

• a vector in span(v 1, . . . , vn) might be a particular viewer’s preferences

• a vector in span(u1, . . . ,um) might be a particular movie’s likeability

u1 has large values for the first two movies, grouping a type of user with a specific set of movies (sci-fi).

v 1 shows large values for users A and B, suggesting the notion of a science fiction lover.

u2 captures an art-house theme, and v 2 indicates that C is close to an idealised lover of such movies.
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4.6 Matrix approximation

The reduced SVD can be expressed as A = U rΣrV T =
r∑

i=1

σiu ivT
i =

r∑
i=1

σiAi

where Ai = u ivT
i is a rank-1 matrix.

1432 × 1910
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By summing only the first k < r terms, we obtain a rank-k approximation Âk .

It turns out that Âk is the closest rank-k matrix to A, in terms of the spectral norm∗.

∗ ‖A‖2 = maxx ‖Ax‖2/‖x‖2 = σ1. The spectral norm of A is equal to its largest singular value.

1432 × 1910
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