Mathematics for Machine Learning

Prof Willie Brink

Applied Mathematics, Stellenbosch University

Lecture 3: Matrix Decompositions

Contents of the module

Chapter 02: Linear Algebra

Chapter 03: Analytic Geometry

Chapter 4: Matrix Decompositions

Chapter 05: Vector Calculus

Chapter 06: Probability and Distributions

Chapter 07: Continuous Optimisation

Chapter 08: When Models Meet Data

Chapter 09: Linear Regression

Chapter 10: Dimensionality Reduction with Principal Component Analysis Chapter 11: Density Estimation with Gaussian Mixture Models

Chapter 12: Classification with Support Vector Machines

4.1 Determinant and trace

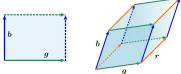
The determinant of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a real number det $(\mathbf{A}) = |\mathbf{A}|$ related to the existence of an inverse: \mathbf{A} is invertible if and only if det $(\mathbf{A}) \neq 0$.

If
$$\mathbf{A} \in \mathbb{R}^{2 \times 2}$$
, $\det(\mathbf{A}) = a_{11}a_{22} - a_{12}a_{21}$
If $\mathbf{A} \in \mathbb{R}^{3 \times 3}$, $\det(\mathbf{A}) = a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{23}$
 $- a_{31}a_{22}a_{13} - a_{11}a_{32}a_{23} - a_{21}a_{12}a_{33}$
Sarrus' rule

If
$$\mathbf{T} \in \mathbb{R}^{n \times n}$$
 is upper-triangular $(t_{i,j} = 0 \text{ for } i > j)$ or lower-triangular $(t_{i,j} = 0, i < j)$,

$$\det(\mathbf{T}) = \prod_{i=1}^{n} t_{i,i}$$

det(**A**) is the signed volume of an *n*-dimensional parallelepiped formed by columns of **A**.



Laplace expansion allows us to compute the determinant of an $n \times n$ matrix in terms of the determinant of an $(n-1) \times (n-1)$ matrix.

Expansion along column *j*:
$$det(\mathbf{A}) = \sum_{k=1}^{n} (-1)^{k+j} a_{k,j} det(\mathbf{A}_{k,j})$$

where $A_{k,j}$ is A with row k and column j deleted. Expansion along a row is similar.

det(AB) = det(A)det(B). det(A^{T}) = det(A). If A is invertible, det(A^{-1}) = 1/det(A). Multiplication of a row/col by $\lambda \in \mathbb{R}$ scales det(A) by λ , hence det(λA) = λ^{n} det(A).

A square matrix **A** has $det(\mathbf{A}) \neq 0$ if and only if $rk(\mathbf{A}) = n$. That is to say, **A** is invertible if and only if it is full rank.

The trace of a square matrix A, tr(A), is the sum of the diagonal elements of A. Trace is invariant under cyclic permutations of factors: tr(ABC) = tr(BCA)

4.2 Eigenvalues and eigenvectors

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$. Then $\lambda \in \mathbb{R}$ is an eigenvalue of \mathbf{A} , with corresponding eigenvector $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$, if $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$.

Note: if x is an eigenvector of A, then so is cx for any $c \in \mathbb{R} \setminus \{0\}$.

Eigenvalues are the roots of the characteristic polynomial of \mathbf{A} : $p_{\mathbf{A}}(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}_n)$ Every eigenvalue has an algebraic multiplicity.

All eigenvectors associated with an eigenvalue λ forms the eigenspace of \mathbf{A} w.r.t. λ . It is the solution space of the system $(\mathbf{A} - \lambda \mathbf{I}_n)\mathbf{x} = \mathbf{0}$, i.e. the null space of $\mathbf{A} - \lambda \mathbf{I}_n$. Its dimension is called the geometric multiplicity of λ .

A and \mathbf{A}^{T} have the same eigenvalues, but not necessarily the same eigenvectors.

Symmetric, positive definite matrices always have positive, real eigenvalues.

Geometrically, the eigenvector corresponding to a nonzero eigenvalue points in a direction that is stretched by the linear mapping A. The eigenvalue is the factor by which it is stretched (can be negative).

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ is defective if it possesses fewer than *n* linearly independent eigenvectors. The eigenvectors of a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with *n* distinct eigenvals are linearly independent.

From a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ we can always form a symmetric, positive semidefinite matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$ as $\mathbf{S} = \mathbf{A}^T \mathbf{A}$. If $rk(\mathbf{A}) = n$, \mathbf{S} will be symmetric, positive definite.

Spectral theorem: if $A^{n \times n}$ is symmetric, there exists an ONB of the vector space consisting of eigenvectors of A, and each eigenvalue is real.

For any matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with (possibly repeating) eigenvalues λ_i ,

$$\det(\boldsymbol{A}) = \prod_{i=1}^n \lambda_i$$
 and $\operatorname{tr}(\boldsymbol{A}) = \sum_{i=1}^n \lambda_i$

Google's PageRank algorithm

Importance of a web page is defined by the importance of the pages that link to it.

Express the web as a huge directed graph of which pages linking to which.

PageRank will compute an importance $x_i \ge 0$ for each page *i*.

Count the number of web pages pointing to *i* and model a user's navigation by a transition matrix \mathbf{A} , with columns summing to 1 and $a_{i,j}$ the probability of navigating from page *i* to page *j*.

A has the property that Ax, A^2x , A^3x , ... converges to vector x^* . It satisfies $Ax^* = x^*$, that is, x^* is an eigenvector of **A** corresponding to eigenvalue 1.

Normalising \mathbf{x}^* (such that $\|\mathbf{x}^*\| = 1$) gives the PageRank of all pages as probabilities.

4.3 Cholesky decomposition

A symmetric, positive definite matrix **A** can be factorised uniquely as $\mathbf{A} = \mathbf{L}\mathbf{L}^{\mathsf{T}}$, where **L** is lower-triangular with positive diagonal elements.

Various algorithms for computing L, including a modification of Gaussian elimination.

Note that $det(\mathbf{A}) = det(\mathbf{L})det(\mathbf{L}^{T}) = det(\mathbf{L})^{2}$.

Since L is lower-triangular, det(A) is the square of the product of L's diagonal elements.

Applications in machine learning:

- Cholesky decomposition of a covariate matrix allows us to generate samples from a multivariate Gaussian
- used in deep stochastic models (e.g. VAEs) to compute gradients

4.4 Eigendecomposition and diagonalisation

A diagonal matrix $\boldsymbol{D} \in \mathbb{R}^{n \times n}$ has zero on all off-diagonal elements.

- det(**D**) is the product of the diagonal elements;
- **D**^k is given by each diagonal element to the power k;
- D^{-1} is the reciprocals of the diagonal elements if they are all nonzero.

Matrix $A \in \mathbb{R}^{n \times n}$ is diagonalisable if there exists an invertible matrix $P \in \mathbb{R}^{n \times n}$ such that $D = P^{-1}AP$ is diagonal.

Note that if **D** has the eigenvalues of **A** on its diagonal, and **P** the corresponding eigenvectors of **A** as columns, then AP = PD. So for **A** to be diagonalisable, it must have *n* linearly independent eigenvectors (so that the inverse of **P** exists).

From the spectral theorem we have that every symmetric matrix is diagonalisable.

The eigendecomposition of **A** is $\mathbf{A} = \mathbf{P} \mathbf{D} \mathbf{P}^{-1}$, where **D** is diagonal with the eigenvalues of **A** on its diagonal and **P** the corresponding eigenvectors of **A** as its columns.

If **A** is symmetric, **P** will be orthogonal so that $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{T}$.

Geometrically, transformations with **A** would be the same as:

- 1. performing a basis change from the standard basis to the eigenbasis (P^{-1})
- 2. scaling along those axes by the eigenvalues (D)
- 3. transforming back into the standard coordinates (\mathbf{P})

If it exists, the eigendecomposition allows for efficient computation of matrix powers and the determinant.

But this decomposition requires the matrix **A** to be square...

4.5 Singular value decomposition

The SVD of a rectangular matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ of rank $r \leq \min\{m, n\}$, is of the form

$A = U \Sigma V^{\mathsf{T}}$

where $\boldsymbol{U} \in \mathbb{R}^{m \times m}$ is orthogonal, with the left-singular vectors of \boldsymbol{A} as columns (\boldsymbol{u}_i)

 $\Sigma \in \mathbb{R}^{m \times n}$ contains the singular values of A on the diagonal and zeros elsewhere

 $m{V} \in \mathbb{R}^{n imes n}$ is orthogonal, with the right-singular vectors of $m{A}$ as columns $(m{v}_j)$

The singular values are non-negative, and by convention in non-increasing order:

$$\sigma_1 \geq \sigma_2 \geq \ldots \sigma_{\min\{m,n\}} \geq 0$$

The SVD exists for any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$.

Geometric intuition: a basis change via V^{T} , followed by a scaling and augmentation (or reduction) in dimensionality via Σ , and then a second basis change via U.

Construction of the SVD

From any $\mathbf{A} \in \mathbb{R}^{m \times n}$ we can construct a symmetric, positive definite matrix $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ with eigendecomposition: $\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{\mathsf{T}}$ (*)

Assuming **A** can be written in the form $U\Sigma V^{\mathsf{T}}$, $A^{\mathsf{T}}A = (U\Sigma V^{\mathsf{T}})^{\mathsf{T}}U\Sigma V^{\mathsf{T}} = V\Sigma^{\mathsf{T}}U^{\mathsf{T}}U\Sigma V^{\mathsf{T}} = V\Sigma^{\mathsf{T}}\Sigma V^{\mathsf{T}}$ since $U^{\mathsf{T}}U = I_m$

Compare with (\star) : $\boldsymbol{V} = \boldsymbol{P}$ and $\boldsymbol{\Sigma}^T \boldsymbol{\Sigma} = \boldsymbol{D}$

The diagonal elements of Σ are the positive square roots of the eigenvalues of $A^T A$. The columns of V are the eigenvectors of $A^T A$ (ordered appropriately).

Similarly, from the eigendecomposition of the symmetric, positive definite matrix AA^{T} we find that the columns of U are the eigenvectors of AA^{T} .

Consider again an $m \times n$ matrix **A** of rank *r*. Because of the many zeros in Σ , some columns of **U** or rows in V^{T} may be redundant (in certain applications).

If $r < \min\{m, n\}$, even more columns and rows can be removed.

The reduced SVD is $\boldsymbol{A} = \boldsymbol{U}_r \boldsymbol{\Sigma}_r \boldsymbol{V}_r^{\mathsf{T}}$, where

 \boldsymbol{U}_r is an $m \times r$ matrix consisting of the first r columns of \boldsymbol{U} ,

 $\boldsymbol{\Sigma}_r$ is an $r \times r$ diagonal matrix with $\sigma_1, \ldots, \sigma_r$ on the diagonal,

and V_r is an $n \times r$ matrix consisting of the first r columns of V.

Applications of the SVD in machine learning:

- solving general linear systems, also in the least-squares sense
- low-rank matrix approximation for dimensionality reduction, topic modelling, data compression, clustering

Finding structure in movie ratings

n viewers rate *m* movies out of 5. We encode this in a data matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, and SVD.

The columns u_i of U are stereotypical movies, and the columns v_i of V stereotypical viewers.

- a vector in span $(\mathbf{v}_1, \ldots, \mathbf{v}_n)$ might be a particular viewer's preferences
- a vector in span $(\boldsymbol{u}_1, \ldots, \boldsymbol{u}_m)$ might be a particular movie's likeability

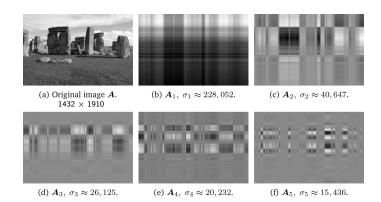
	A	В	0												
Star Wars Blade Runner Amelie Delicatessen	$5 \\ 5 \\ 0 \\ 1$	$ \begin{array}{c} 4 \\ 5 \\ 0 \\ 0 \end{array} $	$\begin{array}{c}1\\0\\5\\4\end{array}$	=	$\begin{array}{r} -0.6710 \\ -0.7197 \\ -0.0939 \\ -0.1515 \end{array}$	$\begin{array}{c} 0.0236 \\ 0.2054 \\ -0.7705 \\ -0.6030 \end{array}$	$0.4647 \\ -0.4759 \\ -0.5268 \\ 0.5293$	-0.5774 0.4619 -0.3464 -0.5774	9.6438 0 0 0	0 6.3639 0 0	$\begin{bmatrix} 0 \\ 0 \\ 0.7056 \\ 0 \end{bmatrix}$	-0.7367 0.0852 0.6708	-0.6515 0.1762 -0.7379	-0.1811 -0.9807 -0.0743	

 u_1 has large values for the first two movies, grouping a type of user with a specific set of movies (sci-fi). v_1 shows large values for users A and B, suggesting the notion of a science fiction lover.

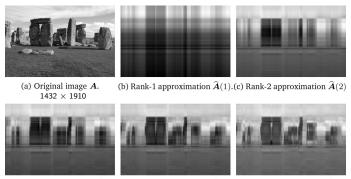
 u_2 captures an art-house theme, and v_2 indicates that C is close to an idealised lover of such movies.

4.6 Matrix approximation

The reduced SVD can be expressed as $\mathbf{A} = \mathbf{U}_r \mathbf{\Sigma}_r \mathbf{V}^{\mathsf{T}} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}} = \sum_{i=1}^r \sigma_i \mathbf{A}_i$ where $\mathbf{A}_i = \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}$ is a rank-1 matrix.



By summing only the first k < r terms, we obtain a rank-k approximation \widehat{A}_k . It turns out that \widehat{A}_k is the closest rank-k matrix to A, in terms of the spectral norm^{*}.



d) Rank-3 approximation $\widehat{A}(3)$.(e) Rank-4 approximation $\widehat{A}(4)$.(f) Rank-5 approximation $\widehat{A}(5)$

* $\|\mathbf{A}\|_2 = \max_{\mathbf{x}} \|\mathbf{A}\mathbf{x}\|_2 / \|\mathbf{x}\|_2 = \sigma_1$. The spectral norm of \mathbf{A} is equal to its largest singular value.