Mathematics for Machine Learning

Prof Willie Brink

Applied Mathematics, Stellenbosch University

Lecture 3: Matrix Decompositions

Contents of the module

Chapter 02: Linear Algebra

Chapter 03: Analytic Geometry

Chapter 4: Matrix Decompositions

Chapter 05: Vector Calculus

Chapter 06: Probability and Distributions

Chapter 07: Continuous Optimisation

Chapter 08: When Models Meet Data

Chapter 09: Linear Regression

Chapter 10: Dimensionality Reduction with Principal Component Analysis

Chapter 11: Density Estimation with Gaussian Mixture Models

Chapter 12: Classification with Support Vector Machines

4.1 Determinant and trace

The determinant of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a real number $\det(\mathbf{A}) = |\mathbf{A}|$ related to the existence of an inverse: \mathbf{A} is invertible if and only if $\det(\mathbf{A}) \neq 0$.

If
$$\mathbf{A} \in \mathbb{R}^{2 \times 2}$$
, $\det(\mathbf{A}) = a_{11}a_{22} - a_{12}a_{21}$

If
$$\mathbf{A} \in \mathbb{R}^{3 \times 3}$$
, $\det(\mathbf{A}) = a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{23} - a_{31}a_{22}a_{13} - a_{11}a_{32}a_{23} - a_{21}a_{12}a_{33}$
Sarrus' rule

If $T \in \mathbb{R}^{n \times n}$ is upper-triangular $(t_{i,j} = 0 \text{ for } i > j)$ or lower-triangular $(t_{i,j} = 0, i < j)$, $det(T) = \prod_{i=1}^{n} t_{i,i}$

 $det(\mathbf{A})$ is the signed volume of an *n*-dimensional parallelepiped formed by columns of \mathbf{A} .

Laplace expansion allows us to compute the determinant of an $n \times n$ matrix in terms of the determinant of an $(n-1) \times (n-1)$ matrix.

Expansion along column
$$j$$
: $\det(\mathbf{A}) = \sum_{k=1}^{n} (-1)^{k+j} a_{k,j} \det(\mathbf{A}_{k,j})$

where $A_{k,j}$ is A with row k and column j deleted. Expansion along a row is similar.

$$\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A})\det(\mathbf{B})$$
. $\det(\mathbf{A}^{\mathsf{T}}) = \det(\mathbf{A})$. If \mathbf{A} is invertible, $\det(\mathbf{A}^{-1}) = 1/\det(\mathbf{A})$. Multiplication of a row/col by $\lambda \in \mathbb{R}$ scales $\det(\mathbf{A})$ by λ , hence $\det(\lambda \mathbf{A}) = \lambda^n \det(\mathbf{A})$.

A square matrix \mathbf{A} has $\det(\mathbf{A}) \neq 0$ if and only if $\operatorname{rk}(\mathbf{A}) = n$. That is to say, \mathbf{A} is invertible if and only if it is full rank.

The trace of a square matrix \mathbf{A} , $\operatorname{tr}(\mathbf{A})$, is the sum of the diagonal elements of \mathbf{A} .

Trace is invariant under cyclic permutations of factors: tr(ABC) = tr(BCA)

4.2 Eigenvalues and eigenvectors

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$. Then $\lambda \in \mathbb{R}$ is an eigenvalue of \mathbf{A} , with corresponding eigenvector $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$, if $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$.

Note: if x is an eigenvector of A, then so is cx for any $c \in \mathbb{R} \setminus \{0\}$.

Eigenvalues are the roots of the characteristic polynomial of \boldsymbol{A} : $p_{\boldsymbol{A}}(\lambda) = \det(\boldsymbol{A} - \lambda \boldsymbol{I}_n)$ Every eigenvalue has an algebraic multiplicity.

All eigenvectors associated with an eigenvalue λ forms the eigenspace of \boldsymbol{A} w.r.t. λ . It is the solution space of the system $(\boldsymbol{A} - \lambda \boldsymbol{I}_n) \boldsymbol{x} = \boldsymbol{0}$, i.e. the null space of $\boldsymbol{A} - \lambda \boldsymbol{I}_n$. Its dimension is called the geometric multiplicity of λ .

 \boldsymbol{A} and \boldsymbol{A}^T have the same eigenvalues, but not necessarily the same eigenvectors.

Symmetric, positive definite matrices always have positive, real eigenvalues.

Geometrically, the eigenvector corresponding to a nonzero eigenvalue points in a direction that is stretched by the linear mapping \boldsymbol{A} . The eigenvalue is the factor by which it is stretched (can be negative).

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ is defective if it possesses fewer than n linearly independent eigenvectors. The eigenvectors of a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with n distinct eigenvals are linearly independent.

From a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ we can always form a symmetric, positive semidefinite matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$ as $\mathbf{S} = \mathbf{A}^T \mathbf{A}$. If $\mathrm{rk}(\mathbf{A}) = n$, \mathbf{S} will be symmetric, positive definite.

Spectral theorem: if $\mathbf{A}^{n \times n}$ is symmetric, there exists an ONB of the vector space consisting of eigenvectors of \mathbf{A} , and each eigenvalue is real.

For any matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with (possibly repeating) eigenvalues λ_i ,

$$\det(oldsymbol{\mathcal{A}}) = \prod_{i=1}^n \lambda_i \quad \mathsf{and} \quad \mathsf{tr}(oldsymbol{\mathcal{A}}) = \sum_{i=1}^n \lambda_i$$

Google's PageRank algorithm

Importance of a web page is defined by the importance of the pages that link to it.

Express the web as a huge directed graph of which pages linking to which.

PageRank will compute an importance $x_i \ge 0$ for each page i.

Count the number of web pages pointing to i and model a user's navigation by a transition matrix \mathbf{A} , with columns summing to 1 and $a_{i,j}$ the probability of navigating from page i to page j.

A has the property that Ax, A^2x , A^3x , ... converges to vector x^* . It satisfies $Ax^* = x^*$, that is, x^* is an eigenvector of **A** corresponding to eigenvalue 1.

Normalising x^* (such that $||x^*|| = 1$) gives the PageRank of all pages as probabilities.

4.3 Cholesky decomposition

A symmetric, positive definite matrix \boldsymbol{A} can be factorised uniquely as $\boldsymbol{A} = \boldsymbol{L}\boldsymbol{L}^{\mathsf{T}}$, where \boldsymbol{L} is lower-triangular with positive diagonal elements.

Various algorithms for computing L, including a modification of Gaussian elimination.

Note that $\det(\mathbf{A}) = \det(\mathbf{L})\det(\mathbf{L}^T) = \det(\mathbf{L})^2$.

Since L is lower-triangular, det(A) is the square of the product of L's diagonal elements.

Applications in machine learning:

- Cholesky decomposition of a covariate matrix allows us to generate samples from a multivariate Gaussian
- used in deep stochastic models (e.g. VAEs) to compute gradients

4.4 Eigendecomposition and diagonalisation

A diagonal matrix $\mathbf{D} \in \mathbb{R}^{n \times n}$ has zero on all off-diagonal elements.

- det(D) is the product of the diagonal elements;
- D^k is given by each diagonal element to the power k;
- D^{-1} is the reciprocals of the diagonal elements if they are all nonzero.

Matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalisable if there exists an invertible matrix $\mathbf{P} \in \mathbb{R}^{n \times n}$ such that $\mathbf{D} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P}$ is diagonal.

Note that if D has the eigenvalues of A on its diagonal, and P the corresponding eigenvectors of A as columns, then AP = PD. So for A to be diagonalisable, it must have n linearly independent eigenvectors (so that the inverse of P exists).

From the spectral theorem we have that every symmetric matrix is diagonalisable.

The eigendecomposition of \mathbf{A} is $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$, where \mathbf{D} is diagonal with the eigenvalues of \mathbf{A} on its diagonal and \mathbf{P} the corresponding eigenvectors of \mathbf{A} as its columns.

If **A** is symmetric, **P** will be orthogonal so that $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^T$.

Geometrically, transformations with **A** would be the same as:

- 1. performing a basis change from the standard basis to the eigenbasis (P^{-1})
- 2. scaling along those axes by the eigenvalues (D)
- 3. transforming back into the standard coordinates (P)

If it exists, the eigendecomposition allows for efficient computation of matrix powers and the determinant.

But this decomposition requires the matrix **A** to be square...

4.5 Singular value decomposition

The SVD of a rectangular matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ of rank $r \leq \min\{m, n\}$, is of the form

$$A = U\Sigma V^{\mathsf{T}}$$

where $\boldsymbol{U} \in \mathbb{R}^{m \times m}$ is orthogonal, with the left-singular vectors of \boldsymbol{A} as columns (\boldsymbol{u}_i)

 $oldsymbol{\Sigma} \in \mathbb{R}^{m imes n}$ contains the singular values of $oldsymbol{A}$ on the diagonal and zeros elsewhere

 $m{V} \in \mathbb{R}^{n imes n}$ is orthogonal, with the right-singular vectors of $m{A}$ as columns $(m{v}_j)$

The singular values are non-negative, and by convention in non-decreasing order:

$$\sigma_1 \geq \sigma_2 \geq \dots \sigma_{\min\{m,n\}} \geq 0$$

The SVD exists for any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$.

Geometric intuition: a basis change via V^T , followed by a scaling and augmentation (or reduction) in dimensionality via Σ , and then a second basis change via U.

Construction of the SVD

From any $\mathbf{A} \in \mathbb{R}^{m \times n}$ we can construct a symmetric, positive definite matrix $\mathbf{A}^T \mathbf{A}$ with eigendecomposition: $\mathbf{A}^T \mathbf{A} = \mathbf{P} \mathbf{D} \mathbf{P}^T$ (*)

Assuming \boldsymbol{A} can be written in the form $\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathsf{T}}$,

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = (\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}})^{\mathsf{T}}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}} = \mathbf{V}\mathbf{\Sigma}^{\mathsf{T}}\mathbf{U}^{\mathsf{T}}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}} = \mathbf{V}\mathbf{\Sigma}^{\mathsf{T}}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}}$$
 since $\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{I}_{m}$

Compare with (\star) : V = P and $\Sigma^T \Sigma = D$

The diagonal elements of Σ are the positive square roots of the eigenvalues of A^TA .

The columns of V are the eigenvectors of A^TA (ordered appropriately).

Similarly, from the eigendecomposition of the symmetric, positive definite matrix $\mathbf{A}\mathbf{A}^T$ we find that the columns of \mathbf{U} are the eigenvectors of $\mathbf{A}\mathbf{A}^T$.

Consider again an $m \times n$ matrix \boldsymbol{A} of rank r. Because of the many zeros in $\boldsymbol{\Sigma}$, some columns of \boldsymbol{U} or rows in $\boldsymbol{V}^{\mathsf{T}}$ may be redundant (in certain applications).

If $r < \min\{m, n\}$, even more columns and rows can be removed.

The reduced SVD is $\mathbf{A} = \mathbf{U}_r \mathbf{\Sigma}_r \mathbf{V}_r^\mathsf{T}$, where

 \boldsymbol{U}_r is an $m \times r$ matrix consisting of the first r columns of \boldsymbol{U} ,

 Σ_r is an $r \times r$ diagonal matrix with $\sigma_1, \dots, \sigma_r$ on the diagonal,

and V_r is an $n \times r$ matrix consisting of the first r columns of V.

Applications of the SVD in machine learning:

- solving general linear systems, also in the least-squares sense
- low-rank matrix approximation for dimensionality reduction, topic modelling, data compression, clustering

Finding structure in movie ratings

n viewers rate *m* movies out of 5. We encode this in a data matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, and SVD.

The columns u_i of U are stereotypical movies, and the columns v_i of V stereotypical viewers.

- a vector in span($\mathbf{v}_1, \dots, \mathbf{v}_n$) might be a particular viewer's preferences
- a vector in $\operatorname{span}(\boldsymbol{u}_1,\ldots,\boldsymbol{u}_m)$ might be a particular movie's likeability

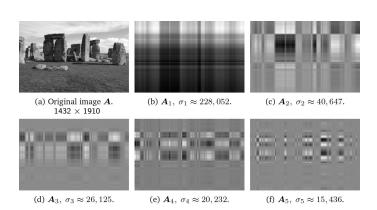
 u_1 has large values for the first two movies, grouping a type of user with a specific set of movies (sci-fi).

 v_1 shows large values for users A and B, suggesting the notion of a science fiction lover.

 u_2 captures an art-house theme, and v_2 indicates that C is close to an idealised lover of such movies.

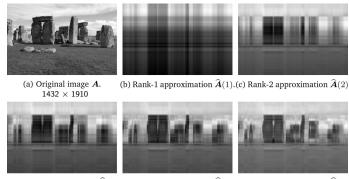
4.6 Matrix approximation

The reduced SVD can be expressed as $\mathbf{A} = \mathbf{U}_r \mathbf{\Sigma}_r \mathbf{V}^\mathsf{T} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^\mathsf{T} = \sum_{i=1}^r \sigma_i \mathbf{A}_i$ where $\mathbf{A}_i = \mathbf{u}_i \mathbf{v}_i^\mathsf{T}$ is a rank-1 matrix.



By summing only the first k < r terms, we obtain a rank-k approximation $\widehat{\mathbf{A}}_k$.

It turns out that \hat{A}_k is the closest rank-k matrix to A, in terms of the spectral norm*.



d) Rank-3 approximation $\widehat{\boldsymbol{A}}(3)$.(e) Rank-4 approximation $\widehat{\boldsymbol{A}}(4)$.(f) Rank-5 approximation $\widehat{\boldsymbol{A}}(5)$

^{*} $\|\mathbf{A}\|_2 = \max_{\mathbf{x}} \|\mathbf{A}\mathbf{x}\|_2 / \|\mathbf{x}\|_2 = \sigma_1$. The spectral norm of \mathbf{A} is equal to its largest singular value.