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3.1 Norms

A norm on a vector space V is a function which assigns each vector x its length

|Ix|| € R, such that for all A € R and x,y € V,
o [l = A ix]
o x4yl <|x||+|lyll triangle inequality
e |[x]| >0, and ||x|| =0 if and only if x =0

n

Manhattan norm on R": ||x||; = Z |xi]

Euclidean norm on R": ||x||2 =




3.2 Inner products

The dot product in R": xTy = Zx,-y,-

i=1
In general, Q: V x V — R is an inner product on vector space V if it is bilinear*,
symmetric ( Q(x,y) = Q(y, x) ), and positive definite (Vx ¢ V\{0} : Q(x,x) >0,
and 2(0,0) =0).

We often write (x, y) instead of Q(x,y). The pair (V,(:,+)) is an inner product space.
If using the dot product, we call (V,(-,-)) a Euclidean vector space.

Consider a vector space V with inner product (-,-), and basis B = (by,..., b,) of V.
It then follows that for any x,y € V, (x,y) = ' Ay, with Aij = (b;,bj) and X,y the
coordinate vectors of x,y w.r.t. B.

*Q(Ax + vy, z) = 2Q(x,z) + ¥Q(y,y) and Q(x, Ay +¢¥z) = A\Q(x,y) + ¥Q(x, z)



Positive definite matrices

Since the inner product is symmetric and positive definite, A from the previous slide is
symmetric, and Vx € V\{0} : xTAx > 0.

We say A is (symmetric) positive definite.

If xTAx >0 for all x € V\{0}, we say A is positive semidefinite.

For vector space V with basis B, (-,-) is an inner product if and only if there exists a
positive definite matrix A such that (x,y) = %T Ay, where % and ¥ are the coordinate
representations of x and y in V w.r.t. basis B.

Note: the null space of A is only 0, since x" Ax > 0 for all x # 0;

the diagonal elements of A are positive, since a;; = e,TAe,- > 0 with e; the jth
vector of the canonical basis in R".



3.3 Lengths and distances

Any inner product induces a norm: || x| = /(x, x)
The induced norm satisfies the Cauchy-Schwarz inequality: |[(x,y)| < ||x]|/||¥Il

The distance between x and y: d(x,y)=|x—y|=V{(x—y,x—y)

If using the dot product, we call it the Euclidean distance.

Distance is a metric, satisfying:

e d(x,y)>0forall x,y € V,and d(x,y)=0ifand only if x =y

d(x,y) =d(y,x) forall x,y € V
o d(x,z) <d(x,y)+d(y,z) forall x,y,ze V

Similar vectors x and y will result in a large inner product and a small distance.



3.4 Angles and orthogonality
According to Cauchy-Schwarz, —1 < Hi)l(l’lﬁ\\ <1 ! 7

(x,y)
[ x[lyll L

There exists a unique angle w € [0, 7] such that cosw =

Vectors x and y are orthogonal, x L y, if and only if (x,y) = 0.

If x Ly and ||x|| = |ly|| =1, we say x and y are orthonormal. 0 !

A square matrix A € R™" is an orthogonal matrix if its columns are orthonormal.

Then AAT = AAT = I, which implies that A~ = AT,

Orthogonal matrices preserve length: ||Ax||? = (Ax)T(Ax) = xT(ATA)x = xTx = || x|?

(x,y)

. Ax
Orthogonal matrices also preserve angles between vectors: (Ax, = =3
g P & TAXTTAYT — TixTlyT




3.5 Orthonormal basis

The basis {bs, ..., b,} of vector space V is called an orthonormal basis (ONB) of V
if <b,‘, bJ> =0 for i 75], and <b,’, b,> =1.

Gram-Schmidt process of building an ONB from a set Bl, ..., by, of basis vectors:
1. concatenate the vectors into matrix B = [by - - b,]

. C - rennT B
2. apply Gaussian elimination to the augmented matrix [BB " | B]



3.6 Orthogonal complement

Consider a D-dimensional vector space V, and an M-dimensional subspace U C V.

The orthogonal complement U~ of U is a (D — M)-dimensional subspace of V/, and
contains all vectors in V' that are ortogonal to every vector in U.

U N U+ = {0}, and any vector x € V can be uniquely written as

M D—M
X = Z)\,‘b,’ + Z wjbf‘
i=1 j=1

with (b1, ..., by) and (by,...,bp ) the bases of U and U+ w

Example: if U describes a plane in 3D, its complement is

the span of the plane’s normal vector. e



3.8 Orthogonal projections

A linear mapping 7 from V to U C V is called a projection if 72 = mom = .
A projection matrix P, has the property that Pfr =P,.

The projection of vector x € R" onto a lower-dimensional subspace U with basis
(b1, ...,bp), is necessarily a linear combination of those basis vectors of U:

Fu(X):)\lbl—i-...—i-)\mbm:B)\ with B:[bl bm]

Three-step procedure to find P,:

1. find A1,..., Am such that B is closest to x
—— solve the normal eqn B'BA = B'x

2. my(x)=B(B"B)"'B"x
3. then P, = B(B'B)'B"
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Projections 7y (x) are still vectors in R”, but lie in a subspace of dimension m, requiring
only m coordinates A1, ..., \n, to be represented in terms of the basis (by,..., by).

For Ax = b when b is not in the column space of A, we may approximate a solution by
projecting b to that column space = the least-squares solution

If (by,...,bp,)is an ONB, the proj. matrix simplifies to P, = BBT, and A = B x.

Gram-Schmidt orthogonalisation iteratively constructs an orthogonal basis (u; ..., u,)
from any basis (b; ..., b,):

u; = b1, and u, = bk - Wspan[ul,...,uk_l](bk)v k= 2, ..., n

Projecting onto an affine subspace L = xg + U:

T (x) = my(x — xo) + Xo
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3.9 Rotations

A class of linear mappings with orthogonal transformation matrices (length and angle
preserving).

Rotation in R?: R(#) = [COS9 —sin 9}

sind cosf

Rotation in R3: combine rotations about the three standard basis vectors

1 0 0 cos¢p 0 sing cosy —siny 0
R1(0) = |0 cos® —sinf|, Ra(p)=1| 0 1 0 |, R3(¥))=|sinyy cosyp O
0 sinf cosf —sing 0 cos¢ 0 0 1

Rotation in R™: fix n — 2 dimensions and restrict the rotation to a 2D plane in R"

(this is called Givens rotation)
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