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3.1 Norms

A norm on a vector space V is a function which assigns each vector x its length

‖x‖ ∈ R, such that for all λ ∈ R and x , y ∈ V ,

• ‖λx‖ = |λ| ‖x‖

• ‖x + y‖ ≤ ‖x‖+ ‖y‖ triangle inequality

• ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0

Manhattan norm on Rn : ‖x‖1 =
n∑

i=1

|xi |

Euclidean norm on Rn : ‖x‖2 =

√√√√ n∑
i=1

x2i =
√

xTx
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3.2 Inner products

The dot product in Rn : xTy =
n∑

i=1

xiyi

In general, Ω : V × V → R is an inner product on vector space V if it is bilinear∗,

symmetric ( Ω(x , y) = Ω(y , x) ), and positive definite (∀x ∈ V \{0} : Ω(x , x) > 0,

and Ω(0, 0) = 0 ).

∗ Ω(λx + ψy , z) = λΩ(x , z) + ψΩ(y , y) and Ω(x , λy + ψz) = λΩ(x , y) + ψΩ(x , z)

We often write 〈x , y〉 instead of Ω(x , y). The pair (V , 〈·, ·〉) is an inner product space.

If using the dot product, we call (V , 〈·, ·〉) a Euclidean vector space.

Consider a vector space V with inner product 〈·, ·〉, and basis B = (b1, . . . ,bn) of V .

It then follows that for any x , y ∈ V , 〈x , y〉 = x̂TAŷ , with Ai ,j = 〈bi ,bj〉 and x̂ , ŷ the

coordinate vectors of x , y w.r.t. B.
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Positive definite matrices

Since the inner product is symmetric and positive definite, A from the previous slide is

symmetric, and ∀x ∈ V \{0} : xTAx > 0.

We say A is (symmetric) positive definite.

If xTAx ≥ 0 for all x ∈ V \{0}, we say A is positive semidefinite.

For vector space V with basis B, 〈·, ·〉 is an inner product if and only if there exists a

positive definite matrix A such that 〈x , y〉 = x̂TAŷ , where x̂ and ŷ are the coordinate

representations of x and y in V w.r.t. basis B.

Note: the null space of A is only 0, since xTAx > 0 for all x 6= 0;

Note: the diagonal elements of A are positive, since ai ,i = eT
i Ae i > 0 with e i the ith

Note: vector of the canonical basis in Rn.
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3.3 Lengths and distances

Any inner product induces a norm: ‖x‖ =
√
〈x , x〉

The induced norm satisfies the Cauchy-Schwarz inequality: |〈x , y〉| ≤ ‖x‖‖y‖

The distance between x and y : d(x , y) = ‖x − y‖ =
√
〈x − y , x − y〉

If using the dot product, we call it the Euclidean distance.

Distance is a metric, satisfying:

• d(x , y) ≥ 0 for all x , y ∈ V , and d(x , y) = 0 if and only if x = y

• d(x , y) = d(y , x) for all x , y ∈ V

• d(x , z) ≤ d(x , y) + d(y , z) for all x , y , z ∈ V

Similar vectors x and y will result in a large inner product and a small distance.
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3.4 Angles and orthogonality

According to Cauchy-Schwarz, −1 ≤ 〈x ,y〉
‖x‖‖y‖ ≤ 1.

There exists a unique angle ω ∈ [0, π] such that cosω =
〈x , y〉
‖x‖‖y‖

.

Vectors x and y are orthogonal, x ⊥ y , if and only if 〈x , y〉 = 0.

If x ⊥ y and ‖x‖ = ‖y‖ = 1, we say x and y are orthonormal.

A square matrix A ∈ Rn×n is an orthogonal matrix if its columns are orthonormal.

Then AAT = AAT = I n which implies that A−1 = AT.

Orthogonal matrices preserve length: ‖Ax‖2 = (Ax)T(Ax) = xT(ATA)x = xTx = ‖x‖2

Orthogonal matrices also preserve angles between vectors: 〈Ax ,Ay〉
‖Ax‖‖Ay‖ = 〈x ,y〉

‖x‖‖y‖
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3.5 Orthonormal basis

The basis {b1, . . . ,bn} of vector space V is called an orthonormal basis (ONB) of V

if 〈bi ,bj〉 = 0 for i 6= j , and 〈bi ,bi 〉 = 1.

Gram-Schmidt process of building an ONB from a set b̃1, . . . , b̃n of basis vectors:

1. concatenate the vectors into matrix B̃ = [ b̃1 · · · b̃n ]

2. apply Gaussian elimination to the augmented matrix [ B̃B̃
T | B̃ ]
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3.6 Orthogonal complement

Consider a D-dimensional vector space V , and an M-dimensional subspace U ⊆ V .

The orthogonal complement U⊥ of U is a (D −M)-dimensional subspace of V , and

contains all vectors in V that are ortogonal to every vector in U.

U ∩ U⊥ = {0}, and any vector x ∈ V can be uniquely written as

x =
M∑
i=1

λibi +
D−M∑
j=1

ψjb⊥j

with (b1, . . . ,bM) and (b⊥1 , . . . ,b
⊥
D−M) the bases of U and U⊥.

Example: if U describes a plane in 3D, its complement is

the span of the plane’s normal vector.
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3.8 Orthogonal projections

A linear mapping π from V to U ⊆ V is called a projection if π2 = π ◦ π = π.

A projection matrix Pπ has the property that P2
π = Pπ.

The projection of vector x ∈ Rn onto a lower-dimensional subspace U with basis

(b1, . . . ,bm), is necessarily a linear combination of those basis vectors of U:

πU(x) = λ1b1 + . . .+ λmbm = Bλ with B = [ b1 · · · bm ]

Three-step procedure to find Pπ:

1. find λ1, . . . , λm such that Bλ is closest to x
=⇒ solve the normal eqn BTBλ = BTx

2. πU(x) = B(BTB)−1BTx

3. then Pπ = B(BTB)−1BT
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Projections πU(x) are still vectors in Rn, but lie in a subspace of dimension m, requiring

only m coordinates λ1, . . . , λm to be represented in terms of the basis (b1, . . . ,bm).

For Ax = b when b is not in the column space of A, we may approximate a solution by

projecting b to that column space =⇒ the least-squares solution

If (b1, . . . ,bm) is an ONB, the proj. matrix simplifies to Pπ = BBT, and λ = BTx .

Gram-Schmidt orthogonalisation iteratively constructs an orthogonal basis (u1 . . . ,un)

from any basis (b1 . . . ,bn):

u1 = b1, and uk = bk − πspan[u1,...,uk−1](bk), k = 2, . . . , n

Projecting onto an affine subspace L = x0 + U:

πL(x) = πU(x − x0) + x0
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3.9 Rotations

A class of linear mappings with orthogonal transformation matrices (length and angle

preserving).

Rotation in R2: R(θ) =

[
cos θ − sin θ
sin θ cos θ

]

Rotation in R3: combine rotations about the three standard basis vectors

R1(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

, R2(φ) =

 cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ

, R3(ψ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1



Rotation in Rn: fix n − 2 dimensions and restrict the rotation to a 2D plane in Rn

Rotation in Rn: (this is called Givens rotation)
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