Mathematics for Machine Learning

Prof Willie Brink

Applied Mathematics, Stellenbosch University

Lecture 2: Analytic Geometry

Contents of the module

Chapter 02: Linear Algebra

Chapter 3: Analytic Geometry

Chapter 04: Matrix Decompositions

Chapter 05: Vector Calculus

Chapter 06: Probability and Distributions

Chapter 07: Continuous Optimisation

Chapter 08: When Models Meet Data

Chapter 09: Linear Regression

Chapter 10: Dimensionality Reduction with Principal Component Analysis Chapter 11: Density Estimation with Gaussian Mixture Models Chapter 12: Classification with Support Vector Machines

3.1 Norms

A norm on a vector space V is a function which assigns each vector \boldsymbol{x} its length $\|\boldsymbol{x}\| \in \mathbb{R}$, such that for all $\lambda \in \mathbb{R}$ and $\boldsymbol{x}, \boldsymbol{y} \in V$,

• $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$

•
$$\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$$
 triangle inequality

•
$$\| \boldsymbol{x} \| \geq 0$$
, and $\| \boldsymbol{x} \| = 0$ if and only if $\boldsymbol{x} = \boldsymbol{0}$

Manhattan norm on
$$\mathbb{R}^n$$
: $\|m{x}\|_1 = \sum_{i=1}^n |x_i|$

Euclidean norm on
$$\mathbb{R}^n$$
: $\|\boldsymbol{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{\boldsymbol{x}^\top \boldsymbol{x}}$

3.2 Inner products

The dot product in
$$\mathbb{R}^n$$
: $\mathbf{x}^\mathsf{T}\mathbf{y} = \sum_{i=1}^n x_i y_i$

In general, $\Omega: V \times V \to \mathbb{R}$ is an inner product on vector space V if it is bilinear^{*}, symmetric ($\Omega(x, y) = \Omega(y, x)$), and positive definite ($\forall x \in V \setminus \{0\} : \Omega(x, x) > 0$, and $\Omega(0, 0) = 0$).

We often write $\langle \mathbf{x}, \mathbf{y} \rangle$ instead of $\Omega(\mathbf{x}, \mathbf{y})$. The pair $(V, \langle \cdot, \cdot \rangle)$ is an inner product space. If using the dot product, we call $(V, \langle \cdot, \cdot \rangle)$ a Euclidean vector space.

Consider a vector space V with inner product $\langle \cdot, \cdot \rangle$, and basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of V. It then follows that for any $\mathbf{x}, \mathbf{y} \in V$, $\langle \mathbf{x}, \mathbf{y} \rangle = \hat{\mathbf{x}}^T \mathbf{A} \hat{\mathbf{y}}$, with $A_{i,j} = \langle \mathbf{b}_i, \mathbf{b}_j \rangle$ and $\hat{\mathbf{x}}, \hat{\mathbf{y}}$ the coordinate vectors of \mathbf{x}, \mathbf{y} w.r.t. B.

*
$$\Omega(\lambda \mathbf{x} + \psi \mathbf{y}, \mathbf{z}) = \lambda \Omega(\mathbf{x}, \mathbf{z}) + \psi \Omega(\mathbf{y}, \mathbf{y})$$
 and $\Omega(\mathbf{x}, \lambda \mathbf{y} + \psi \mathbf{z}) = \lambda \Omega(\mathbf{x}, \mathbf{y}) + \psi \Omega(\mathbf{x}, \mathbf{z})$

Positive definite matrices

Since the inner product is symmetric and positive definite, **A** from the previous slide is symmetric, and $\forall x \in V \setminus \{0\} : x^T A x > 0$.

We say **A** is (symmetric) positive definite.

If $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} \ge 0$ for all $\mathbf{x} \in V \setminus \{\mathbf{0}\}$, we say \mathbf{A} is positive semidefinite.

For vector space V with basis B, $\langle \cdot, \cdot \rangle$ is an inner product if and only if there exists a positive definite matrix \boldsymbol{A} such that $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \hat{\boldsymbol{x}}^{\mathsf{T}} \boldsymbol{A} \hat{\boldsymbol{y}}$, where $\hat{\boldsymbol{x}}$ and $\hat{\boldsymbol{y}}$ are the coordinate representations of \boldsymbol{x} and \boldsymbol{y} in V w.r.t. basis B.

Note: the null space of **A** is only **0**, since $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$;

the diagonal elements of **A** are positive, since $a_{i,i} = e_i^T A e_i > 0$ with e_i the *i*th vector of the canonical basis in \mathbb{R}^n .

3.3 Lengths and distances

Any inner product induces a norm: $\| \pmb{x} \| = \sqrt{\langle \pmb{x}, \pmb{x} \rangle}$

The induced norm satisfies the Cauchy-Schwarz inequality: $|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{x}|| ||\mathbf{y}||$

The distance between \boldsymbol{x} and \boldsymbol{y} : $d(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} - \boldsymbol{y}\| = \sqrt{\langle \boldsymbol{x} - \boldsymbol{y}, \boldsymbol{x} - \boldsymbol{y} \rangle}$

If using the dot product, we call it the Euclidean distance.

Distance is a metric, satisfying:

• $d(x, y) \ge 0$ for all $x, y \in V$, and d(x, y) = 0 if and only if x = y

•
$$d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$$
 for all $\mathbf{x}, \mathbf{y} \in V$

•
$$d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$$
 for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$

Similar vectors x and y will result in a large inner product and a small distance.

3.4 Angles and orthogonality

According to Cauchy-Schwarz, $-1 \leq \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|} \leq 1$. There exists a unique angle $\omega \in [0, \pi]$ such that $\cos \omega = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}$.

Vectors x and y are orthogonal, $x \perp y$, if and only if $\langle x, y \rangle = 0$. If $x \perp y$ and ||x|| = ||y|| = 1, we say x and y are orthonormal.

A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is an orthogonal matrix if its columns are orthonormal. Then $\mathbf{A}\mathbf{A}^T = \mathbf{A}\mathbf{A}^T = \mathbf{I}_n$ which implies that $\mathbf{A}^{-1} = \mathbf{A}^T$.

Orthogonal matrices preserve length: $\|\mathbf{A}\mathbf{x}\|^2 = (\mathbf{A}\mathbf{x})^T (\mathbf{A}\mathbf{x}) = \mathbf{x}^T (\mathbf{A}^T \mathbf{A}) \mathbf{x} = \mathbf{x}^T \mathbf{x} = \|\mathbf{x}\|^2$

Orthogonal matrices also preserve angles between vectors: $\frac{\langle \mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y} \rangle}{\|\mathbf{A}\mathbf{x}\|\|\|\mathbf{A}\mathbf{y}\|} = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\|\|\|\mathbf{y}\|}$

3.5 Orthonormal basis

The basis $\{\boldsymbol{b}_1, \ldots, \boldsymbol{b}_n\}$ of vector space V is called an orthonormal basis (ONB) of V if $\langle \boldsymbol{b}_i, \boldsymbol{b}_j \rangle = 0$ for $i \neq j$, and $\langle \boldsymbol{b}_i, \boldsymbol{b}_j \rangle = 1$.

Gram-Schmidt process of building an ONB from a set $\tilde{\boldsymbol{b}}_1, \ldots, \tilde{\boldsymbol{b}}_n$ of basis vectors:

- 1. concatenate the vectors into matrix $\tilde{\boldsymbol{B}} = [\tilde{\boldsymbol{b}}_1 \cdots \tilde{\boldsymbol{b}}_n]$
- 2. apply Gaussian elimination to the augmented matrix $[\tilde{B}\tilde{B}^{T}|\tilde{B}]$

3.6 Orthogonal complement

Consider a *D*-dimensional vector space *V*, and an *M*-dimensional subspace $U \subseteq V$. The orthogonal complement U^{\perp} of *U* is a (D - M)-dimensional subspace of *V*, and contains all vectors in *V* that are ortogonal to every vector in *U*.

 $U \cap U^{\perp} = \{\mathbf{0}\}$, and any vector $\mathbf{x} \in V$ can be uniquely written as

$$oldsymbol{x} = \sum_{i=1}^{M} \lambda_i oldsymbol{b}_i + \sum_{j=1}^{D-M} \psi_j oldsymbol{b}_j^{\perp}$$

with $(oldsymbol{b}_1, \dots, oldsymbol{b}_M)$ and $(oldsymbol{b}_1^{\perp}, \dots, oldsymbol{b}_{D-M}^{\perp})$ the bases of U and U^{\perp}

Example: if U describes a plane in 3D, its complement is the span of the plane's normal vector.

3.8 Orthogonal projections

A linear mapping π from V to $U \subseteq V$ is called a projection if $\pi^2 = \pi \circ \pi = \pi$.

A projection matrix \boldsymbol{P}_{π} has the property that $\boldsymbol{P}_{\pi}^2 = \boldsymbol{P}_{\pi}$.

The projection of vector $\mathbf{x} \in \mathbb{R}^n$ onto a lower-dimensional subspace U with basis $(\mathbf{b}_1, \ldots, \mathbf{b}_m)$, is necessarily a linear combination of those basis vectors of U:

$$\pi_U(\mathbf{x}) = \lambda_1 \mathbf{b}_1 + \ldots + \lambda_m \mathbf{b}_m = \mathbf{B} \boldsymbol{\lambda} \text{ with } \mathbf{B} = [\mathbf{b}_1 \cdots \mathbf{b}_m]$$

Three-step procedure to find P_{π} :

- 1. find $\lambda_1, \ldots, \lambda_m$ such that $B\lambda$ is closest to x \implies solve the normal eqn $B^T B \lambda = B^T x$
- 2. $\pi_U(\mathbf{x}) = \mathbf{B}(\mathbf{B}^T\mathbf{B})^{-1}\mathbf{B}^T\mathbf{x}$
- 3. then $\boldsymbol{P}_{\pi} = \boldsymbol{B}(\boldsymbol{B}^{T}\boldsymbol{B})^{-1}\boldsymbol{B}^{T}$

Projections $\pi_U(\mathbf{x})$ are still vectors in \mathbb{R}^n , but lie in a subspace of dimension *m*, requiring only *m* coordinates $\lambda_1, \ldots, \lambda_m$ to be represented in terms of the basis $(\mathbf{b}_1, \ldots, \mathbf{b}_m)$.

For Ax = b when b is not in the column space of A, we may approximate a solution by projecting b to that column space \implies the least-squares solution

If $(\boldsymbol{b}_1, \ldots, \boldsymbol{b}_m)$ is an ONB, the proj. matrix simplifies to $\boldsymbol{P}_{\pi} = \boldsymbol{B}\boldsymbol{B}^{\mathsf{T}}$, and $\boldsymbol{\lambda} = \boldsymbol{B}^{\mathsf{T}}\boldsymbol{x}$.

Gram-Schmidt orthogonalisation iteratively constructs an orthogonal basis $(u_1 \dots, u_n)$ from any basis $(b_1 \dots, b_n)$:

$$u_1 = b_1$$
, and $u_k = b_k - \pi_{span[u_1,...,u_{k-1}]}(b_k)$, $k = 2,..., n$

Projecting onto an affine subspace $L = \mathbf{x}_0 + U$:

$$\pi_L(\boldsymbol{x}) = \pi_U(\boldsymbol{x} - \boldsymbol{x}_0) + \boldsymbol{x}_0$$

3.9 Rotations

A class of linear mappings with orthogonal transformation matrices (length and angle preserving).

Rotation in
$$\mathbb{R}^2$$
: $\boldsymbol{R}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

Rotation in \mathbb{R}^3 : combine rotations about the three standard basis vectors $\boldsymbol{R}_1(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}, \quad \boldsymbol{R}_2(\phi) = \begin{bmatrix} \cos\phi & 0 & \sin\phi \\ 0 & 1 & 0 \\ -\sin\phi & 0 & \cos\phi \end{bmatrix}, \quad \boldsymbol{R}_3(\psi) = \begin{bmatrix} \cos\psi & -\sin\psi & 0 \\ \sin\psi & \cos\psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Rotation in \mathbb{R}^n : fix n - 2 dimensions and restrict the rotation to a 2D plane in \mathbb{R}^n (this is called Givens rotation)