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2.2 Matrices
R™*"™ is the set of all real-valued matrices with m rows and n columns.
The sum of matrices A, B € R™*" is computed elementwise.
n
The product of A € R™*" and B € R"*¥ is a matrix C € R™*k with Gij = Z aj by .
/=1

The Hadamard product of matrices A, B € R™*" is computed elementwise.

Matrix multiplication is associative and distributive, but in general not commutative
(AB # BA).

With 1, the identity matrix in R™" we have I,,A= A and Al,= A, VA € R™*"
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The inverse of square matrix A € R™" is a matrix B = A~! such that AB=BA =1,
o if the inverse exists, A is called invertible / nonsingular (or regular)

o if the inverse doesn't exist, A is called noninvertible / singular
(AB)™' = B7'A! and, in general, (A+B) '#£A '+ B71
The transpose of A € R™*" is B = AT € R™M with bij = aj;.
(AB)T =BTA" and (A+B)"=AT + BT,

A matrix A € R™" is symmetric if A= AT,
If A is invertible, then so is AT, and (A7) = (A HT =A"T.

Scalar multiplication (AA) is calculated elementwise, and is associative and distributive.



2.3 Solving systems of linear equations

General approach to solve Ax = b:
1. find a particular solution to Ax = b
2. find all solutions to Ax =0

3. combine the solutions from steps 1 and 2

Gaussian elimination

Use elementary transformations that do not change the solution (row exchange,
multiplying a row with nonzero constant, adding rows) to find a row-echelon form.
pivot: first nonzero element in a row from the left
staricase structure: every pivot is strictly to the right of the pivot above it

The reduced row echelon form, where every pivot is 1 and is the only nonzero entry in
its column, eases steps 1 and 2 above.
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1. Finding a particular solution to Ax = b:
Write [A | b] in reduced row-echelon form (RREF).
Set free variables (not corresponding to pivots) to zero.

Easily solve for the basic variables (corresponding to pivots).

2. Finding a general solution to Ax = 0:

Augment the RREF of A with rows of the form [0---0 —1 0--- 0] so that we have
1 or —1 on the diagonal.

General solution: all linear combinations of the columns with —1 on the diagonal.

3. A general solution to Ax = b will be the sum of steps 1 and 2.

Calculating the inverse of A € R™": the RREF of [A | I,] will be [I,| A™1].



2.4 Vector spaces

A real-valued vector space V = (V, 4+, ) consists of a set V and two operations

+: VXV =YV vector addition
- R XV =V scalar multiplication

where (V,+) is an Abelian group™ with neutral element 0

and VA R, x,y €V : A-(x+y)=XA-x+X\-y
A+v) - x=X-x+¢-x
A (- x) = (M) - x

and the neutral element w.r.t. scalar multiplication is 1, such that Vx €V : 1. x = x.

* closed, associative, commutative, Vx € V:x+0=x, V¥ xeVdyeV:x+y=0



We will denote a vector space (V,+,-) by V, and assume + and - are the standard
vector addition and scalar multiplication.

We'll often write x € V to simplify notation.

We also often omit the dot in scalar multiplication: Ax = A\ - x

Vector subspaces

Let V = (V,+,-) be a vector space, and U C V with U # ().
Then U = (U, +,-) is a vector subspace of V if:
e U contains the neutral element w.r.t. vector addition: 0 € U
e U is closed w.r.t. vector addition: Vx,y cU : x+y el

o U is closed w.r.t. scalar multiplication: VA€ R, xeld : \xelU
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2.5 Linear independence

A linear combination of x1,..., X, in vector space V is any vector v € V of the form
V=MAMxXx1+ ...+ XXy with A\q, ..., A € R.

A set x1,...,x, € V is linearly dependent if there is a non-trivial linear combination
A1x1 4 ...+ Ax,x = 0 with at least one \; # 0.

If the only way to form 0 is with A1,..., A\x = 0, the set is linearly independent.

Linear independence implies no vector in the set can be written as a linear combination
of the others (no redundancy).

In row-echelon form, non-pivot columns can be expressed as linear combinations of
pivot columns on their left. So columns of A are linearly independent if and only if

all columns in the REF of A are pivot columns.
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2.6 Basis and rank

The span of A = {x1,...,xx} in vector space V is all possible linear combinations of
the vectors in A. If span[A] = V, then A is a generating set of V.

If the vectors in generating set A are linearly independent, then A is a basis of V.
The canonical / standard basis of R” consists of the columns of /.

Every basis of vector space V has the same number of vectors; the dimension of V.
If UC V,dim(U) <dim(V), and dim(U) = dim(V) if and only if U = V.

Finding a basis of U = span[x1,...,xpm]:
1. write the spanning vectors as columns of matrix A
2. determine the row-echelon form of A

3. the spanning vectors associated with pivot columns are a basis of U

12/17



The rank of matrix A, written as rk(A), is the number of linearly independent columns
(or rows) of A. Note: rk(A) = rk(AT).

If U is the subspace spanned by the columns of A, then dim(U) = rk(A).

Later we'll call this U the image or range of A.
If W is the subspace spanned by the rows of A, then dim(W) = rk(A).
Matrix A € R"*" is invertible if and only if rk(A) = n.

For A € R™*", the subspace of solutions for Ax = b has dimension n — rk(A).

Later we'll call this subspace the kernel or null space of A.
Matrix A € R™*" has full rank if rk(A) = min{m, n}. Otherwise, A is rank deficient.
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2.7 Linear mappings

For vector spaces V and W, the mapping ® : V — W is a linear mapping if
VAP ER, x,y €V : d(Ax +y) = Ad(x) + »d(y)

If ® is bijective®, there exists an inverse mapping W : W — V such that ¥(d(x)) = x.

Identity mapping in V: idy : V — V, with idy(x) = x.

x = 2e; + 3ey

ll)‘ t ::117,

€T

Let B = (b1,...,b,) be an ordered basis of vector space V.
Any x € V can be written as x = a1 b1 + ... + a,b, and we
call a1,...,a, the coordinates of x w.r.t. B.
€3
* injective: if ®(x) = ®(y) then x =y
surjective: ®(V)=W
bijective: injective and surjective
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Let B = (by,...,b,) and C = (c1,...,€Cm) be bases of vectors spaces V and W.
Consider a linear mapping ® : V — W, such that ®(b;) = ayjc1 + ... + amjcm.
The matrix A with elements «; ; is the transformation matrix of ® (w.r.t. 5 and C).

If x is the coordinate vector of x, and y that of y = ®(x), then y = AX.

Basis change

Consider two ordered bases B = (by,...,b,) and B = (Bl, el 13,,) of V,
and two ordered bases C = (ci,...,¢cp) and C = (€1,...,€p) of W,

Let Ap € R™*" be the transformation matrix of ® : V — W w.r.t. bases B and C,
and Ay € R™*" the corresponding transformation matrix w.r.t. bases B and C

Then Ap = T 'Ap S with S € R™" the t.m. of idy that maps coords w.r.t. B to B,
and T € R™™ the t.m. of id\y that maps coords from Cto C.



Image and kernel

The image/range of ®:V — W is Im(®) =d(V)={we W|Ive V:d(v)=w}.

The kernel/null space of ®: V — W is ker(®) = ®71(0) = {v € V : d(v) = 0}.
Im(®) is a subspace of W, and ker(®) is a subspace of V.

For the mapping ®(x) = Ax, Im(®) is the column space of A ( span|columns of A] ),
and ker(®) is all solutions to Ax = 0.

Rank-nullity theorem: dim(V) = dim(Im(®)) + dim(ker(®))
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2.8 Affine subspaces

Let V be a vector space, xo € V and U C V a subspace of V. The subset L, with
L={xo+ u:uec U} is called an affine subspace (or linear manifold, or hyperplane).

U is the direction space, and xq is the support point.
If xg & U, the affine subspace is not a vector subspace because it won't contain 0.

If (b1,...,bg) is a basis of U, then any element x € L can be written as
X =xg9+ b1+ ...+ Xcby.

An affine mapping from V to W has the form ¢(x) = a + ®(x), where ¢ : V — W
is a linear mapping, and a is a translation vector.
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