Mathematics for Machine Learning

Prof Willie Brink

Applied Mathematics, Stellenbosch University

Lecture 1: Linear Algebra

Module information

Lecturer: Prof Willie Brink (wbrink@sun.ac.za)

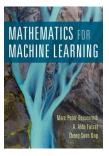
Classes: Mondays and Wednesdays 9:30 to 12:30 in A403A

Textbook: https://mml-book.com

Assessment:

Week 1: assignment 1 (15%), quiz 1 (15%) Week 2: assignment 2 (15%), quiz 2 (15%) Week 3: assignment 3 (15%), final test (25%)

SUNLearn: https://learn.sun.ac.za



Contents of the module

Chapter 2: Linear Algebra

Chapter 03: Analytic Geometry

Chapter 04: Matrix Decompositions

Chapter 05: Vector Calculus

Chapter 06: Probability and Distributions

Chapter 07: Continuous Optimisation

Chapter 08: When Models Meet Data

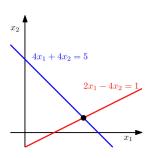
Chapter 09: Linear Regression

Chapter 10: Dimensionality Reduction with Principal Component Analysis Chapter 11: Density Estimation with Gaussian Mixture Models Chapter 12: Classification with Support Vector Machines

2.1 Systems of linear equations

m equations, n unknowns

Can have no solution, or exactly one solution, or infinitely many.



2.2 Matrices

 $\mathbb{R}^{m \times n}$ is the set of all real-valued matrices with *m* rows and *n* columns.

The sum of matrices $A, B \in \mathbb{R}^{m \times n}$ is computed elementwise.

The product of $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and $\boldsymbol{B} \in \mathbb{R}^{n \times k}$ is a matrix $\boldsymbol{C} \in \mathbb{R}^{m \times k}$ with $c_{i,j} = \sum_{\ell=1}^{n} a_{i,\ell} b_{\ell,j}$.

The Hadamard product of matrices $A, B \in \mathbb{R}^{m \times n}$ is computed elementwise.

Matrix multiplication is associative and distributive, but in general <u>not</u> commutative $(AB \neq BA)$.

With I_n the identity matrix in $\mathbb{R}^{n \times n}$, we have $I_m \mathbf{A} = \mathbf{A}$ and $\mathbf{A}I_n = \mathbf{A}$, $\forall \mathbf{A} \in \mathbb{R}^{m \times n}$.

The inverse of square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a matrix $\mathbf{B} = \mathbf{A}^{-1}$ such that $\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A} = \mathbf{I}_n$.

- if the inverse exists, A is called invertible / nonsingular (or regular)
- if the inverse doesn't exist, A is called noninvertible / singular

$$(oldsymbol{A}oldsymbol{B})^{-1}=oldsymbol{B}^{-1}oldsymbol{A}^{-1}$$
 and, in general, $(oldsymbol{A}+oldsymbol{B})^{-1}
eqoldsymbol{A}^{-1}+oldsymbol{B}^{-1}.$

The transpose of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is $\mathbf{B} = \mathbf{A}^{\mathsf{T}} \in \mathbb{R}^{n \times m}$, with $b_{i,j} = a_{j,i}$.

$$(\boldsymbol{A}\boldsymbol{B})^{\mathsf{T}} = \boldsymbol{B}^{\mathsf{T}}\boldsymbol{A}^{\mathsf{T}}$$
 and $(\boldsymbol{A}+\boldsymbol{B})^{\mathsf{T}} = \boldsymbol{A}^{\mathsf{T}} + \boldsymbol{B}^{\mathsf{T}}$.

A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric if $\mathbf{A} = \mathbf{A}^{\mathsf{T}}$.

If **A** is invertible, then so is \mathbf{A}^{T} , and $(\mathbf{A}^{\mathsf{T}})^{-1} = (\mathbf{A}^{-1})^{\mathsf{T}} = \mathbf{A}^{-\mathsf{T}}$.

Scalar multiplication (λA) is calculated elementwise, and is associative and distributive.

2.3 Solving systems of linear equations

General approach to solve Ax = b:

- 1. find a particular solution to Ax = b
- 2. find all solutions to Ax = 0
- 3. combine the solutions from steps 1 and 2

Gaussian elimination

Use elementary transformations that do not change the solution (row exchange, multiplying a row with nonzero constant, adding rows) to find a row-echelon form. pivot: first nonzero element in a row from the left staricase structure: every pivot is strictly to the right of the pivot above it

The reduced row echelon form, where every pivot is 1 and is the only nonzero entry in its column, eases steps 1 and 2 above.

- Finding a particular solution to Ax = b: Write [A | b] in reduced row-echelon form (RREF).
 Set free variables (not corresponding to pivots) to zero.
 Easily solve for the basic variables (corresponding to pivots).
- 2. Finding a general solution to Ax = 0:

Augment the RREF of **A** with rows of the form $[0 \cdots 0 - 1 \ 0 \cdots 0]$ so that we have 1 or -1 on the diagonal.

General solution: all linear combinations of the columns with -1 on the diagonal.

3. A general solution to Ax = b will be the sum of steps 1 and 2.

Calculating the inverse of $\mathbf{A} \in \mathbb{R}^{n \times n}$: the RREF of $[\mathbf{A} | \mathbf{I}_n]$ will be $[\mathbf{I}_n | \mathbf{A}^{-1}]$.

2.4 Vector spaces

A real-valued vector space $V=(\mathcal{V},+,\cdot)$ consists of a set \mathcal{V} and two operations

 $+: \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}$ vector addition

 $\cdot : \mathbb{R} \times \mathcal{V} \to \mathcal{V}$ scalar multiplication

where $(\mathcal{V},+)$ is an Abelian group* with neutral element $\mathbf{0}$

and
$$\forall \lambda, \psi \in \mathbb{R}, \ \mathbf{x}, \mathbf{y} \in \mathcal{V} : \lambda \cdot (\mathbf{x} + \mathbf{y}) = \lambda \cdot \mathbf{x} + \lambda \cdot \mathbf{y}$$

 $(\lambda + \psi) \cdot \mathbf{x} = \lambda \cdot \mathbf{x} + \psi \cdot \mathbf{x}$
 $\lambda \cdot (\psi \cdot \mathbf{x}) = (\lambda \psi) \cdot \mathbf{x}$

and the neutral element w.r.t. scalar multiplication is 1, such that $\forall x \in \mathcal{V} : 1 \cdot x = x$.

* closed, associative, commutative, $\forall x \in \mathcal{V} : x + 0 = x$, $\forall x \in \mathcal{V} \exists y \in \mathcal{V} : x + y = 0$

We will denote a vector space $(\mathcal{V}, +, \cdot)$ by \mathcal{V} , and assume + and \cdot are the standard vector addition and scalar multiplication.

We'll often write $x \in V$ to simplify notation.

We also often omit the dot in scalar multiplication: $\lambda \mathbf{x} = \lambda \cdot \mathbf{x}$

Vector subspaces

Let $V = (\mathcal{V}, +, \cdot)$ be a vector space, and $\mathcal{U} \subseteq \mathcal{V}$ with $\mathcal{U} \neq \emptyset$. Then $U = (\mathcal{U}, +, \cdot)$ is a vector subspace of V if:

- ${\mathcal U}$ contains the neutral element w.r.t. vector addition: $\ \boldsymbol{0} \in {\mathcal U}$
- U is closed w.r.t. vector addition: $\forall x, y \in U$: $x + y \in U$
- *U* is closed w.r.t. scalar multiplication: $\forall \lambda \in \mathbb{R}, \ \mathbf{x} \in \mathcal{U} \ : \ \lambda \mathbf{x} \in \mathcal{U}$

2.5 Linear independence

A linear combination of x_1, \ldots, x_k in vector space V is any vector $v \in V$ of the form $v = \lambda_1 x_1 + \ldots + \lambda_k x_k$ with $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$.

A set $x_1, \ldots, x_k \in V$ is linearly dependent if there is a non-trivial linear combination $\lambda_1 x_1 + \ldots + \lambda_k x_k = \mathbf{0}$ with at least one $\lambda_i \neq 0$.

If the only way to form **0** is with $\lambda_1, \ldots, \lambda_k = 0$, the set is linearly independent.

Linear independence implies no vector in the set can be written as a linear combination of the others (no redundancy).

In row-echelon form, non-pivot columns can be expressed as linear combinations of pivot columns on their left. So columns of A are linearly independent if and only if all columns in the REF of A are pivot columns.

2.6 Basis and rank

The span of $\mathcal{A} = \{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ in vector space V is all possible linear combinations of the vectors in \mathcal{A} . If span $[\mathcal{A}] = V$, then \mathcal{A} is a generating set of V.

If the vectors in generating set A are linearly independent, then A is a basis of V.

The canonical / standard basis of \mathbb{R}^n consists of the columns of I_n .

Every basis of vector space V has the same number of vectors; the dimension of V.

If $U \subseteq V$, dim $(U) \leq \dim(V)$, and dim $(U) = \dim(V)$ if and only if U = V.

Finding a basis of $U = \operatorname{span}[\mathbf{x}_1, \ldots, \mathbf{x}_m]$:

- 1. write the spanning vectors as columns of matrix **A**
- 2. determine the row-echelon form of A
- 3. the spanning vectors associated with pivot columns are a basis of U

The rank of matrix \mathbf{A} , written as rk(\mathbf{A}), is the number of linearly independent columns (or rows) of \mathbf{A} . Note: rk(\mathbf{A}) = rk(\mathbf{A}^{T}).

If U is the subspace spanned by the columns of A, then dim(U) = rk(A). Later we'll call this U the *image* or *range* of A.

If W is the subspace spanned by the rows of A, then dim(W) = rk(A).

Matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is invertible if and only if $rk(\mathbf{A}) = n$.

For $\mathbf{A} \in \mathbb{R}^{m \times n}$, the subspace of solutions for $\mathbf{A}\mathbf{x} = \mathbf{b}$ has dimension $n - \text{rk}(\mathbf{A})$. Later we'll call this subspace the *kernel* or *null space* of \mathbf{A} .

Matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ has full rank if $rk(\mathbf{A}) = min\{m, n\}$. Otherwise, \mathbf{A} is rank deficient.

2.7 Linear mappings

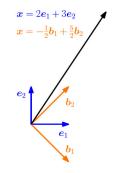
For vector spaces V and W, the mapping $\Phi : V \to W$ is a linear mapping if $\forall \lambda, \psi \in \mathbb{R}, \ \mathbf{x}, \mathbf{y} \in \mathcal{V} : \Phi(\lambda \mathbf{x} + \psi \mathbf{y}) = \lambda \Phi(\mathbf{x}) + \psi \Phi(\mathbf{y})$

If Φ is bijective^{*}, there exists an inverse mapping $\Psi : W \to V$ such that $\Psi(\Phi(\mathbf{x})) = \mathbf{x}$.

Identity mapping in V: $id_V : V \to V$, with $id_V(\mathbf{x}) = \mathbf{x}$.

Let $B = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_n)$ be an ordered basis of vector space V. Any $\boldsymbol{x} \in V$ can be written as $\boldsymbol{x} = \alpha_1 \boldsymbol{b}_1 + \dots + \alpha_n \boldsymbol{b}_n$ and we call $\alpha_1, \dots, \alpha_n$ the coordinates of \boldsymbol{x} w.r.t. B.

* injective: if
$$\Phi(\mathbf{x}) = \Phi(\mathbf{y})$$
 then $\mathbf{x} = \mathbf{y}$
surjective: $\Phi(V) = W$
bijective: injective and surjective



Let $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ and $C = (\mathbf{c}_1, \dots, \mathbf{c}_m)$ be bases of vectors spaces V and W. Consider a linear mapping $\Phi : V \to W$, such that $\Phi(\mathbf{b}_j) = \alpha_{1,j}\mathbf{c}_1 + \dots + \alpha_{m,j}\mathbf{c}_m$. The matrix \mathbf{A} with elements $\alpha_{i,j}$ is the transformation matrix of Φ (w.r.t. B and C).

If \hat{x} is the coordinate vector of x, and \hat{y} that of $y = \Phi(x)$, then $\hat{y} = A\hat{x}$.

Basis change

Consider two ordered bases
$$B = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_n)$$
 and $\tilde{B} = (\tilde{\boldsymbol{b}}_1, \dots, \tilde{\boldsymbol{b}}_n)$ of V ,
and two ordered bases $C = (\boldsymbol{c}_1, \dots, \boldsymbol{c}_n)$ and $\tilde{C} = (\tilde{\boldsymbol{c}}_1, \dots, \tilde{\boldsymbol{c}}_n)$ of W ,

Let $\mathbf{A}_{\Phi} \in \mathbb{R}^{m \times n}$ be the transformation matrix of $\Phi : V \to W$ w.r.t. bases B and C, and $\tilde{\mathbf{A}}_{\Phi} \in \mathbb{R}^{m \times n}$ the corresponding transformation matrix w.r.t. bases \tilde{B} and \tilde{C}

Then $\tilde{A}_{\Phi} = T^{-1}A_{\Phi}S$ with $S \in \mathbb{R}^{n \times n}$ the t.m. of id_V that maps coords w.r.t. \tilde{B} to B, and $T \in \mathbb{R}^{m \times m}$ the t.m. of id_W that maps coords from \tilde{C} to C.

Image and kernel

The image/range of $\Phi: V \to W$ is $\operatorname{Im}(\Phi) = \Phi(V) = \{ \mathbf{w} \in W \mid \exists \mathbf{v} \in V : \Phi(\mathbf{v}) = \mathbf{w} \}.$ The kernel/null space of $\Phi: V \to W$ is $\ker(\Phi) = \Phi^{-1}(\mathbf{0}) = \{ \mathbf{v} \in V : \Phi(v) = \mathbf{0} \}.$

 $Im(\Phi)$ is a subspace of W, and $ker(\Phi)$ is a subspace of V.

For the mapping $\Phi(x) = Ax$, Im(Φ) is the column space of A (span[columns of A]), and ker(Φ) is all solutions to Ax = 0.

Rank-nullity theorem: $\dim(V) = \dim(\operatorname{Im}(\Phi)) + \dim(\ker(\Phi))$

2.8 Affine subspaces

Let V be a vector space, $\mathbf{x}_0 \in V$ and $U \subseteq V$ a subspace of V. The subset L, with $L = {\mathbf{x}_0 + \mathbf{u} : \mathbf{u} \in U}$, is called an affine subspace (or linear manifold, or hyperplane).

U is the direction space, and x_0 is the support point.

If $x_0 \notin U$, the affine subspace is not a vector subspace because it won't contain **0**.

If $(\boldsymbol{b}_1, \dots, \boldsymbol{b}_k)$ is a basis of U, then any element $\boldsymbol{x} \in L$ can be written as $\boldsymbol{x} = \boldsymbol{x}_0 + \lambda_1 \boldsymbol{b}_1 + \dots + \lambda_k \boldsymbol{b}_k.$

An affine mapping from V to W has the form $\phi(\mathbf{x}) = \mathbf{a} + \Phi(\mathbf{x})$, where $\Phi: V \to W$ is a linear mapping, and \mathbf{a} is a translation vector.