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Module information

Lecturer: Prof Willie Brink (wbrink@sun.ac.za)

Classes: Mondays and Wednesdays 9:30 to 12:30 in A403A

Textbook: https://mml-book.com

Assessment:

Week 1: assignment 1 (15%), quiz 1 (15%)

Week 2: assignment 2 (15%), quiz 2 (15%)

Week 3: assignment 3 (15%), final test (25%)

SUNLearn: https://learn.sun.ac.za
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2.1 Systems of linear equations

a1,1 x1 + a1,2 x2 + . . . + a1,n xn = b1

a2,1 x1 + a2,2 x2 + . . . + a2,n xn = b2

...
...

am,1 x1 + am,2 x2 + . . . + am,n xn = bm

m equations, n unknowns


a1,1

a2,1

...
am,1

 x1 +


a1,2

a2,2

...
am,2

 x2 + . . . +


a1,n

a2,n

...
am,n

 xn =


b1

b2

...
bm



a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n



x1

x2

...
xn

 =


b1

b2

...
bm

 =⇒ Ax = b

Can have no solution,

or exactly one solution,

or infinitely many.
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2.2 Matrices

Rm×n is the set of all real-valued matrices with m rows and n columns.

The sum of matrices A,B ∈ Rm×n is computed elementwise.

The product of A ∈ Rm×n and B ∈ Rn×k is a matrix C ∈ Rm×k with ci ,j =
n∑

`=1

ai ,`b`,j .

The Hadamard product of matrices A,B ∈ Rm×n is computed elementwise.

Matrix multiplication is associative and distributive, but in general not commutative

(AB 6= BA).

With I n the identity matrix in Rn×n, we have Im A = A and A I n = A, ∀A ∈ Rm×n.
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The inverse of square matrix A ∈ Rn×n is a matrix B = A−1 such that AB = BA = I n.

• if the inverse exists, A is called invertible / nonsingular (or regular)

• if the inverse doesn’t exist, A is called noninvertible / singular

(AB)−1 = B−1A−1 and, in general, (A + B)−1 6= A−1 + B−1.

The transpose of A ∈ Rm×n is B = AT ∈ Rn×m, with bi ,j = aj ,i .

(AB)T = BTAT and (A + B)T = AT + BT.

A matrix A ∈ Rn×n is symmetric if A = AT.

If A is invertible, then so is AT, and (AT)−1 = (A−1)T = A−T.

Scalar multiplication (λA) is calculated elementwise, and is associative and distributive.
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2.3 Solving systems of linear equations

General approach to solve Ax = b:

1. find a particular solution to Ax = b

2. find all solutions to Ax = 0

3. combine the solutions from steps 1 and 2

Gaussian elimination

Use elementary transformations that do not change the solution (row exchange,

multiplying a row with nonzero constant, adding rows) to find a row-echelon form.

pivot: first nonzero element in a row from the left

staricase structure: every pivot is strictly to the right of the pivot above it

The reduced row echelon form, where every pivot is 1 and is the only nonzero entry in

its column, eases steps 1 and 2 above.
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1. Finding a particular solution to Ax = b:

Write [ A | b ] in reduced row-echelon form (RREF).

Set free variables (not corresponding to pivots) to zero.

Easily solve for the basic variables (corresponding to pivots).

2. Finding a general solution to Ax = 0:

Augment the RREF of A with rows of the form [0 · · · 0 −1 0 · · · 0] so that we have

1 or −1 on the diagonal.

General solution: all linear combinations of the columns with −1 on the diagonal.

3. A general solution to Ax = b will be the sum of steps 1 and 2.

Calculating the inverse of A ∈ Rn×n : the RREF of [ A | I n ] will be [ I n | A−1 ] .
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2.4 Vector spaces

A real-valued vector space V = (V,+, ·) consists of a set V and two operations

+ : V × V → V vector addition

· : R× V → V scalar multiplication

where (V,+) is an Abelian group∗ with neutral element 0

∗ closed, associative, commutative, ∀x ∈ V : x + 0 = x , ∀x ∈ V ∃y ∈ V : x + y = 0

and ∀λ, ψ ∈ R, x , y ∈ V : λ · (x + y) = λ · x + λ · y
(λ+ ψ) · x = λ · x + ψ · x
λ · (ψ · x) = (λψ) · x

and the neutral element w.r.t. scalar multiplication is 1, such that ∀x ∈ V : 1 · x = x .
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We will denote a vector space (V,+, ·) by V , and assume + and · are the standard

vector addition and scalar multiplication.

We’ll often write x ∈ V to simplify notation.

We also often omit the dot in scalar multiplication: λx = λ · x

Vector subspaces

Let V = (V,+, ·) be a vector space, and U ⊆ V with U 6= ∅.

Then U = (U ,+, ·) is a vector subspace of V if:

• U contains the neutral element w.r.t. vector addition: 0 ∈ U

• U is closed w.r.t. vector addition: ∀x , y ∈ U : x + y ∈ U

• U is closed w.r.t. scalar multiplication: ∀λ ∈ R, x ∈ U : λx ∈ U
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2.5 Linear independence

A linear combination of x1, . . . , xk in vector space V is any vector v ∈ V of the form

v = λ1x1 + . . .+ λkxk with λ1, . . . , λk ∈ R.

A set x1, . . . , xk ∈ V is linearly dependent if there is a non-trivial linear combination

λ1x1 + . . .+ λkxk = 0 with at least one λi 6= 0.

If the only way to form 0 is with λ1, . . . , λk = 0, the set is linearly independent.

Linear independence implies no vector in the set can be written as a linear combination

of the others (no redundancy).

In row-echelon form, non-pivot columns can be expressed as linear combinations of

pivot columns on their left. So columns of A are linearly independent if and only if

all columns in the REF of A are pivot columns.
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2.6 Basis and rank

The span of A = {x1, . . . , xk} in vector space V is all possible linear combinations of

the vectors in A. If span[A] = V , then A is a generating set of V .

If the vectors in generating set A are linearly independent, then A is a basis of V .

The canonical / standard basis of Rn consists of the columns of I n.

Every basis of vector space V has the same number of vectors; the dimension of V .

If U ⊆ V , dim(U) ≤ dim(V ), and dim(U) = dim(V ) if and only if U = V .

Finding a basis of U = span[x1, . . . , xm]:

1. write the spanning vectors as columns of matrix A
2. determine the row-echelon form of A
3. the spanning vectors associated with pivot columns are a basis of U
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The rank of matrix A, written as rk(A), is the number of linearly independent columns

(or rows) of A. Note: rk(A) = rk(AT).

If U is the subspace spanned by the columns of A, then dim(U) = rk(A).

Later we’ll call this U the image or range of A.

If W is the subspace spanned by the rows of A, then dim(W ) = rk(A).

Matrix A ∈ Rn×n is invertible if and only if rk(A) = n.

For A ∈ Rm×n, the subspace of solutions for Ax = b has dimension n − rk(A).

Later we’ll call this subspace the kernel or null space of A.

Matrix A ∈ Rm×n has full rank if rk(A) = min{m, n}. Otherwise, A is rank deficient.
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2.7 Linear mappings

For vector spaces V and W , the mapping Φ : V →W is a linear mapping if

∀λ, ψ ∈ R, x , y ∈ V : Φ(λx + ψy) = λΦ(x) + ψΦ(y)

If Φ is bijective∗, there exists an inverse mapping Ψ : W → V such that Ψ(Φ(x)) = x .

∗ injective: if Φ(x) = Φ(y) then x = y
∗ surjective: Φ(V )=W
∗ bijective: injective and surjective

Identity mapping in V : idV : V → V , with idV (x) = x .

Let B = (b1, . . . ,bn) be an ordered basis of vector space V .

Any x ∈ V can be written as x = α1b1 + . . .+ αnbn and we

call α1, . . . , αn the coordinates of x w.r.t. B.
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Let B = (b1, . . . ,bn) and C = (c1, . . . , cm) be bases of vectors spaces V and W .

Consider a linear mapping Φ : V →W , such that Φ(bj) = α1,jc1 + . . .+ αm,jcm.

The matrix A with elements αi ,j is the transformation matrix of Φ (w.r.t. B and C ).

If x̂ is the coordinate vector of x , and ŷ that of y = Φ(x), then ŷ = A x̂ .

Basis change

Consider two ordered bases B = (b1, . . . ,bn) and B̃ = (b̃1, . . . , b̃n) of V ,

and two ordered bases C = (c1, . . . , cn) and C̃ = (c̃1, . . . , c̃n) of W ,

Let AΦ ∈ Rm×n be the transformation matrix of Φ : V →W w.r.t. bases B and C ,

and ÃΦ ∈ Rm×n the corresponding transformation matrix w.r.t. bases B̃ and C̃

Then ÃΦ = T−1AΦ S with S ∈ Rn×n the t.m. of idV that maps coords w.r.t. B̃ to B,

and T ∈ Rm×m the t.m. of idW that maps coords from C̃ to C .

15/17



Image and kernel

The image/range of Φ : V →W is Im(Φ) = Φ(V ) = {w ∈W | ∃v ∈ V : Φ(v) = w}.

The kernel/null space of Φ : V →W is ker(Φ) = Φ−1(0) = {v ∈ V : Φ(v) = 0}.

Im(Φ) is a subspace of W , and ker(Φ) is a subspace of V .

For the mapping Φ(x) = Ax , Im(Φ) is the column space of A ( span[ columns of A ] ),

and ker(Φ) is all solutions to Ax = 0.

Rank-nullity theorem: dim(V ) = dim(Im(Φ)) + dim(ker(Φ))
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2.8 Affine subspaces

Let V be a vector space, x0 ∈ V and U ⊆ V a subspace of V . The subset L, with

L = {x0 + u : u ∈ U}, is called an affine subspace (or linear manifold, or hyperplane).

U is the direction space, and x0 is the support point.

If x0 6∈ U, the affine subspace is not a vector subspace because it won’t contain 0.

If (b1, . . . ,bk) is a basis of U, then any element x ∈ L can be written as

x = x0 + λ1b1 + . . .+ λkbk .

An affine mapping from V to W has the form φ(x) = a + Φ(x), where Φ : V →W

is a linear mapping, and a is a translation vector.
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