
ASSIGNMENT 2

Mathematics for Machine Learning 811 24 January 2022

Problems 1, 2, 4(a), 5(a) and 5(b) are intended for pen-and-paper, and your submission should include steps.
The rest of the problems can be done with the aid of Python.

What you submit must be your own work, and sources other than the lecture material must be cited.
Remember to append a signed plagiarism declaration to your submission.

1. Consider the bivariate distribution p(x, y) of two dis-
crete random variables X and Y , given in the table
on the right.

(a) Find the marginal distributions p(x) and p(y).

(b) Find the conditional distribution p(x |Y = y1).

(c) Suppose the value of xi is i, and the value of yi is i. Compute the correlation between X and Y .

0.01 0.02 0.03 0.10 0.10

0.05 0.10 0.05 0.07 0.20

0.10 0.05 0.03 0.05 0.04

x1 x2 x3 x4 x5

X

y1
y2
y3

Y

p.t.o.

2. In a factory there are three machines that make light bulbs. The machines manufacture 20%, 30%
and 50% of the total production. From their production, 5%, 4%, and 2% respectively are faulty. I
choose a collection of light bulbs at random from the factory’s output.

(a) If the collection contains two faulty light bulbs, what is the probability that those two come from
the same machine?

(b) If the collection contains three faulty light bulbs, what is the probability that those three come
from three different machines?

3. Generate 1,000 samples from the Gaussian distribution N
([

3
2

]
,

[
10 5
5 5

])
by means of

(a) the procedure given in section 6.5.4 of the textbook;

(b) the probability integral transform (see paragraph immediately after Theorem 6.15 in the book).

Hint: the inverse Gaussian cdf can be written in terms of the inverse error function (scipy.special.erfinv).

For each method separately, plot the samples, calculate the empirical mean and covariance, and
compare with the true mean and covariance.

4. Each of the N rows in x.dat is a training sample xn ∈ R2 with corresponding label yn ∈ {0, 1} in
y.dat. Your task will be to use gradient descent in order to fit a logistic classifier,

σ(x) =
1

1 + exp(−wTx− b)
,

to this data. The model parameters are w ∈ R2 and b ∈ R, and a sensible choice for the objective
function in this case is the “cross-entropy loss” between true labels yn and predicted labels σ(xn),
averaged over the training set:

L(w, b) =
1

N

N∑
n=1

[
−yn log

(
σ(xn)

)
− (1− yn) log

(
1− σ(xn)

)]
.
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(a) Prove that the gradient descent update rules for minimising L(w, b) are as follows:

wi+1 = wi − γ
1

N

N∑
n=1

(
σ(xn)− yn

)
xn, bi+1 = bi − γ

1

N

N∑
n=1

(
σ(xn)− yn

)
.

(b) Initialise w0 and b0 with zeros, and implement batch gradient descent. A fixed value for γ between
1 and 5 seems reasonable, but you are free to experiment. To check convergence, plot L(wi, bi)
as a function of i. Give your final values of w and b.

(c) Plot all xn points in the x1–x2 plane, using two different colours for yn = 0 and yn = 1, as well as
the decision boundary of the trained logistic model. Here the decision boundary would consist of
all x for which σ(x) = 0.5, that is, wTx+ b = 0 (a straight line in the x1–x2 plane that tries to
separate the two classes).

5. Consider a coin for which the probability µ of landing on heads is unknown, and let X be a binomial
random variable representing the number of heads in N flips of this coin.

(a) Determine the maximum likelihood estimate of µ, given that h of the N flips resulted in heads.

Hint: differentiate p(x = h |N,µ) with respect to µ, set it to 0, and solve for θ.

(b) Place a beta prior on µ, with parameters α and β. See Example 6.11 on page 208 of the textbook.
Write down the complete posterior distribution p(µ |x = h,N, α, β), specifying all constants
omitted by the book (necessary for the plots in part (c)). Then determine the maximum a
posteriori estimate of µ.

(c) Choose some value for µ in (0, 1), simulate 100 flips of the coin, and let h be the number of heads
obtained. Now again suppose µ is unknown. Plot the prior distribution p(µ |α, β) and posterior
distribution p(µ |x = h,N, α, β) from part (b) as functions of µ, for each of the following parameter
choices:

ii. α = 1, β = 1 (a uniform prior)

ii. α = 8, β = 8 (a unimodal prior centred around µ = 1
2).

How do the graphs compare with the true value of µ?

6. Your task here will be to generate a noisy dataset and then apply linear regression to fit polynomials
of various degrees, similar to what is shown in Figures 9.4, 9.5 and 9.7 of the textbook.

(a) Generate N = 10 data points (xn, yn), with xn sampled uniformly randomly from [−5, 5], and
yn = sin(xn/5) + cos(xn) + ε, where ε ∼ N (0, 0.04). Plot your data as dots in the x–y plane. This
will be the fixed dataset for parts (b) and (c) below.

(b) Fit polynomials of degree 1, 2, . . . , 9 using maximum likelihood estimation. Plot each one sepa-
rately over the data points (similar to Figure 9.5).

Note: when fitting a polynomial of degree p, create a data vector xn = [1, xn, x
2
n, . . . , x

p
n]T for each input xn.

(c) Repeat part (b) using maximum a posteriori estimation, with Gaussian priors p(θ) = N (0, b2I).
Briefly discuss and compare to your graphs in part (b).
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